
Jarvis Web Gateway

Working with Jarvis

(User & Technical Documentation)

Jonathan Couper-Smartt

jarvis@nsquared.co.nz

Abstract: The Jarvis Web Gateway is a lightweight web-service designed to give Rich Internet
Applications a rapid, powerful and secure mechanism to access and update server-side databases.
Jarvis can be configured to use Apache's “mod_perl” for better performance than simple CGI.

Jarvis supports fetch, create, update and delete with additional support for custom plug-in features.
Jarvis is based on the RESTful approach to http web services. It provides JSON, XML interfaces,
with additional support for CSV and MS Excel downloads.

Jarvis works excellently with JavaScript web apps using ExtJS, Dojo and many other JS toolkits,
and is also ideal for richer client applications such as those written in Adobe Flex.

Jarvis supports any database for which a Perl DBI driver exists. This include Oracle, PostgreSQL,
MySQL, SQL Server, SQLite and more.

December 2013 Working with Jarvis – v5.4.2 1/72

Table of Contents
 1 Introduction..5
 2 Licence...6

 2.1 GNU Lesser General Public License..6
 2.2 Clarification of Intentions...6
 2.3 Jarvis Tracker Icons..6

 3 Installation..7
 3.1 Separate Documentation...7

 4 Application Configuration File...8
 4.1 Introduction...8
 4.2 List of Parameters...9
 4.3 Configuration Parameter Details...11

 5 Login Module Configuration..20
 5.1 Standard Modules...20
 5.2 Active Directory Login...20
 5.3 Basic Auth Login..21
 5.4 Database Login...22
 5.5 Adempiere Login..23
 5.6 Drupal6 Login...25
 5.7 None Login...26
 5.8 Single Login..27

 6 Special Datasets & Jarvis Login...29
 6.1 Jarvis URLs...29
 6.2 The __status Dataset...29
 6.3 The __habitat Dataset...30
 6.4 The __logout Dataset..31
 6.5 Logging-In to Jarvis..31
 6.6 Jarvis Error Responses..31

 7 Fetch Results..33
 7.1 Format = json ...33
 7.2 Format = json.array ..34
 7.3 Format = xml..34
 7.4 Format = xml.array...35
 7.5 Format = csv...36
 7.6 Format = xlsx..36

 8 Datasets and Parameters...37
 8.1 Dataset Definition...37
 8.2 Dataset Bind Parameters...39
 8.3 Fallback Parameters..40
 8.4 Other Parameter Notes..40
 8.5 Safe Parameters...41
 8.6 Textual Substitution..42

 9 SSAS Data Pump Datasets...43
 9.1 MDX Queries..43
 9.2 Parameter Processing..44

 10 Storing Datasets..45

December 2013 Working with Jarvis – v5.4.2 2/72

 10.1 Modifying Datasets – Single Modification...45
 10.2 Modifying Datasets – Array of Modifications..47
 10.3 Modifying Datasets – Array of Mixed Modifications..49
 10.4 Before & After Statements..49
 10.5 Transaction and Rollback..49

 11 Dataset Transformations...51
 11.1 Introduction...51

 12 Fetching Multiple Datasets in One Request...52
 12.1 Introduction...52
 12.2 JSON Multi-Dataset Result Structure...52
 12.3 XML Multi-Dataset Result Structure..53

 13 Exec Datasets..54
 13.1 Introduction...54
 13.2 Configuration..54
 13.3 Output Return Mechanism..57
 13.4 A Simple Example..58
 13.5 Environment Variables..58
 13.6 Command Line Parameters...58
 13.7 Output & Headers...58

 14 Plugin Datasets...60
 14.1 Introduction...60
 14.2 Configuration..60
 14.3 Example Plugin...61
 14.4 Output & Headers...62
 14.5 Exception Handling..62

 15 Hook Modules..63
 15.1 Introduction...63
 15.2 Hook Points...63
 15.3 Configuration..68
 15.4 Sample Hook Template...69

 16 Performance Notes...71
 16.1 How Fast is Jarvis?...71

December 2013 Working with Jarvis – v5.4.2 3/72

Version Tracking (Since v4.0.0):

Version Date By Comment

4.0.0 21-Dec-2010 JXC Added support for more than one dataset fetch per request.

4.0.4 3-Feb-2011 JXC Allow override of mime type for plugins.

4.1.1 4-Feb-2011 JXC Support named database connections.

4.1.2 18-Feb-2011 JXC Document “dump” and “debug” for Exec and Plugin config.

4.1.4 7-Mar-2011 JXC Add “word2html” transformation tag.

4.1.5 18-May-2011 JXC Improved Drupal6 group determination.

4.2.0 24-May-2011 JXC Login module configuration is now optional.

4.2.4 13-Jun-2011 JXC Add “no_password” option to ActiveDirectory module.

4.2.6 9-Aug-2011 HK Add “%H” log format option.

4.2.7 31-Aug-2011 HK Add “require_post” login parameter.

5.0.0 1-Sep-2011 JXC Add SSAS Data Pump, plus json.array, xml.array formats.
Add $column_names_aref to dataset_fetched hook template.

5.0.1 7-Sep-2011 JXC Add support for download in XLSX format.

5.0.2 16-Sep-2011 JXC Add “dbname” on “dataset_dir”.

5.0.3 31-Oct-2011 HK Add prepare attributes to datasets

5.0.4 21-Nov-2011 JL Update apt-get list to include SOAP::Lite and JSON:PP.

5.0.5 08-Dec-2011 JL Pass safe parameters to the dataset start hook

5.1.1 14-Feb-2012 JXC Use “!” for flags, not “:”. Add “!raw” flag for MDX.

5.2.0 21-Feb-2012 JXC Add Solaris support. Separate Install/Demo/Tracker docs.

5.2.1 23-Feb-2012 JXC Added “pre_connect” hook.

5.2.2 29-Feb-2012 HK Allow * wildcard in Adempiere login relevant_groups parameter.

5.2.3 9-Mar-2012 JXC Add “!raw” flag for DBI text substitution.

5.3.0 3-Apr-2012 HK Tracker uses postgres database.

5.3.1 12-Apr-2012 HK Added allowed_groups parameter to ActiveDirectory/Adempiere.

5.3.2 3-Jul-2012 HK Added global prepare attribute to databases.

5.3.3 4-Jul-2012 HK Added “nolog” dataset parameter to suppress logging.

5.3.4 7-Aug-2012 HK Added “post_connect” query to database connection config.

5.3.5 17-Aug-2012 HK Added “ignore” dataset parameter to suppress warnings.

5.3.6 16-Jan-2013 JL Added support for custom DBH attributes.

December 2013 Working with Jarvis – v5.4.2 4/72

 1 Introduction
Jarvis is “helper glue”. It is designed to bridge the gap between your web-apps and your back-end
database. The three standard components in a solution using Jarvis are:

1. Rich Internet Application. Ajax (XML or JSON) requests and responses.

2. JARVIS

3. Database. Accessible via SQL.

Front-end RIAs are often written using technologies such as Adobe Flex, or JavaScript using
libraries including Dojo or ExtJS. These are often simple CRUD (CReate, Update, Delete)
applications which simply wish to perform basic operations on a back end database.

This requires some server script to handle data requests over http and perform the corresponding
back-end database transactions in a manner which is secure, extensible, standards-based and
reasonably efficient.

Jarvis is that server script, and meets those three key requirements.

• Secure:

◦ Jarvis can run over https.

◦ Jarvis uses single-login and CGI cookies to maintain authenticated sessions.

◦ Jarvis uses parameterized statements to prevent against SQL injection.

◦ Jarvis provides group-based access control.

• Extensible:

◦ Jarvis provides independent “datasets”, defined as simple XML files containing SQL.

◦ Jarvis provides configurable “exec” extensions (e.g. running Jasper reports).

◦ Jarvis provides a “plugin” mechanism for adding custom Perl modules.

• Standards-Based:

◦ Jarvis is based on XML, JSON, http/s and REST.

• Reasonably Efficient:

◦ Jarvis is “plenty fast enough”.

◦ Jarvis is written in a scripted language as many back end services are.

◦ Jarvis can cache database connections under mod_perl.

In practical use, the load added by Jarvis appears to be very minimal – and Jarvis performance isn't
likely to become a major concern unless you are running a very intensive application.

For the majority of “everyday” web applications, I hope you will find that Jarvis does everything
you need to do, in a simple and helpful fashion.

December 2013 Working with Jarvis – v5.4.2 5/72

 2 Licence

 2.1 GNU Lesser General Public License

This documentation is part of the Jarvis WebApp/Database gateway utility.

Jarvis (including documentation) is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

Jarvis is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with Jarvis. If
not, see <http://www.gnu.org/licenses/>.

This software (including documentation) is Copyright 2011 by Jonathan Couper-Smartt.

 2.2 Clarification of Intentions

The intention of the releasing under the LGPL (rather than the GPL) is to provide additional
freedom to allow you to develop Exec and Plugin modules.

Such Exec and Plugin modules are considered to be part of your “Application” and not part of
Jarvis, and are thus excluded from the “Minimal Corresponding Source” under the terms of the
agreement.

 2.3 Jarvis Tracker Icons

The Jarvis Tracker icons, as can be found in the 'tracker/htdocs/style' directory are copyright
FamFamFam (http://www.famfamfam.com/lab/icons/silk/), and are used under the Creative
Commons Attribution License v3.0 (http://creativecommons.org/licenses/by/3.0/). We extend our
thanks to the creator of these icons for their quality and availability.

December 2013 Working with Jarvis – v5.4.2 6/72

http://www.famfamfam.com/lab/icons/silk/
http://creativecommons.org/licenses/by/3.0/

 3 Installation

 3.1 Separate Documentation

Please see the separate “Jarvis Install” document. That covers:

• Installation on Linux, Solaris and Windows.

• Testing your Jarvis installation.

• Testing the “Demo” application.

• Installing the “Tracker” application.

December 2013 Working with Jarvis – v5.4.2 7/72

 4 Application Configuration File

 4.1 Introduction

From Jarvis's point of view, an “application” is a collection of datasets which share some basic
attributes in common. Most importantly they share:

• The database connection(s).

• The username/group list.

• The directory containing dataset definition files.

These parameters and many others are defined by the application global configuration file. The
following file demonstrates all of the current application config parameters supported by Jarvis.

<?xml version="1.0" encoding="utf­8"?>
<jarvis>
 <app format="json" debug="yes" dump="yes" require_https="no">
 <habitat>
 <install_type>test</install_type>
 </habitat>

 <page_limit_param>limit</page_limit_param>
 <page_start_param>start</page_start_param>
 <sort_field_param>sort</sort_field_param>
 <sort_dir_param>dir</sort_dir_param>
 <method_param>_method</method_param>

 <default_libs>
 <lib path=”/home/myapp/edit/plugin"/>
 </default_libs>

 <default_parameters>
 <parameter name="max_rows" value="500"/>
 </default_parameters>

 <tracker logins=”yes” requests="yes" errors="yes">
 <dbfile>/var/lib/jarvis/tracker/tracker.db</dbfile>
 </tracker>

 <login module="Jarvis::Login::Database">
 <parameter name="user_table" value="staff"/>
 <parameter name="user_id_column" value="id"/>
 <parameter name="user_username_column" value="name"/>
 <parameter name="user_password_column" value="password"/>
 <parameter name="group_table" value="staff_group"/>
 <parameter name="group_username_column" value="name"/>
 <parameter name="group_group_column" value="group_name"/>
 <parameter name="encryption" value="md5"/>
 <parameter name="salt_prefix_len" value="2"/>
 </login>
 <database connect="dbi:Pg:dbname=test" username="" password=""/>
 <database name=”secondary” connect="dbi:Pg:dbname=test"
 username="" password=""/>

 <sessiondb store="driver:file;serializer:default;id:md5"

December 2013 Working with Jarvis – v5.4.2 8/72

 expiry="+3M" cookie="APP_CGISESSID">
 <parameter name="Directory" value="/home/myapp/tmp/sessions"/>
 </sessiondb>

 <exec dataset="sample" access="*"
 command="/path/to/program"
 add_headers="yes" filename_parameter="filename"/>

 <plugin dataset="csvexport" access="admin"
 lib="/path/to/plugin"
 module="Test::ExportToCsv" add_headers="yes"/>

 <plugin dataset="doSomethingUnspecified" access="admin"
 module="Test::DoSomethingUnspecified" add_headers="yes"/>

 <hook module="MyHooks::CustomAudit"/>
 </app>
</jarvis>

Each of these will be discussed in detail.

 4.2 List of Parameters

All configuration is currently contained within <jarvis><app>. Only one application is defined per
configuration file. The name of the application is defined by the name of the application
configuration file. For example, an application named “test” must be defined by a configuration file
named:

/etc/jarvis/test.xml

The <app> tag may have the following attributes. Note that throughout this configuration file all
“boolean” attributes interpret “yes”, “true”, “on” or “1” to indicate true. All other values mean
false.

Attribute Default Notes

format json Default format for returned content. Valid configuration options
are: “json”, “json.array”, “xml”, “xml.array”, “csv”, or “xlsx”.

Note that the content of client POST requests is also either
JSON or XML, but does not need to match the returned format.

debug no This will enable additional debug output to STDERR, which
will appear in your apache error log.

dump no Identical to debug, the dump flag enables “extra” debug
including a full dump of all requests and returned content.

require_https no Require all connections for this application to use HTTPS.

log_format See Notes Specifies the format template to use for debug, dump and log
output. Default is “[%P/%A/%U/%D] %M”. See following
log_format section for description of available fields.

page_limit_param page_limit Name of the CGI parameter which will be used as the page size
for server-side paging (performed after fetching).

December 2013 Working with Jarvis – v5.4.2 9/72

Attribute Default Notes

page_start_param page_start Name of the CGI parameter which will be used as the start row
number for server-side paging (performed after fetching).

sort_field_param sort_field Name of the CGI parameter which will be used column name
for server-side sorting (performed after fetching). CGI
parameter with this name should match a returned column name.

sort_dir_param sort_dir Name of the CGI parameter which will be used column name
for server-side sorting (performed after fetching). CGI
parameter with this name should have value 'ASC' or 'DESC'.

method_param _method Name of the CGI parameter which may over-ride the request
method for RESTful updates. Required for Flex which restricts
requests to GET and POST only.

dataset_dir <none> Defines a directory to contain dataset definition files. Multiple
dataset_dir entries may be defined.

default_libs <none> This element allows a list of zero or more directories to be
defined which will then be added to the @INC path when
loading plugin modules to execute.

default_parameters <none> Defines values which are supplied as default user parameters on
all requests.

tracker See Notes This section enables the optional request/error tracking feature
of Jarvis. See the subsequent section which describes this in
detail.

login <n/a> This sub-element defines and configures the login mechanism to
be used for this application. At most one instance of this should
be defined. If none is defined, users will never be logged in, and
datasets must use “**” as their access group parameter.

database <n/a> This is a sub-element which defines the database connection
parameters for the database(s) you intend to access. If there is
more than one, they should have unique “name” parameters.
The default name is “default”. The name “tracker” is reserved
for the tracker application.

sessiondb <n/a> This defines the configuration for the cookie store. If this is
omitted, then Jarvis will not maintain a login session cookie.
Instead it will perform a full login check for every request. This
can make sense in some situations.

exec <n/a> One or more optional sub-elements of this name may define an
exec action (spawn a sub-process running a separate program).

plugin <n/a> One or more optional sub-elements of this name may define a
plugin action (dynamically load a Perl module and execute the
“do” method on that module).

hook <n/a> One or more optional custom Perl modules on which we call
specially named methods at key points in the Jarvis processing.

habitat <n/a> Optional single sub-element containing configuration which will
be passed to the application on request.

December 2013 Working with Jarvis – v5.4.2 10/72

Table 1: <jarvis><app> Attributes

 4.3 Configuration Parameter Details

 4.3.1 Configuration: format

Default encoding format from response body returned by Jarvis to the client.

Specify “json”, “json.array”, “xml”, “xml.array”, “csv”, or “xlsx”.

• This may be over-ridden a per-request basis with the CGI parameter “format”.

• This parameter is entirely separate from the encoding of the submitted POST data in the
request, which is specified via the content-type header in the HTTP request.

 4.3.2 Configuration: debug

This will cause extra debug to be written to standard error, which will appear in the apache error
log. In a high-traffic environment, you should carefully consider the potential performance impact
of enabling debug.

 4.3.3 Configuration: dump

The dump flag enables a second level of debug which also prints output showing:

• All client-submitted request body.

• All returned XML/JSON/CSV content.

• All SQL statements being executed.

Enabling “dump” will also enable “debug”. Again, “dump” output should not generally be used in a
high-traffic environment.

 4.3.4 Configuration: log_format

The Jarvis script will generate log output in certain situations. If enabled, it will also generate a
significant amount of detailed debug and/or dump output which is potentially useful for identifying
problems where client requests are not being processed as expected.

The log format string specifies the format which is used for log, debug and dump output. This is a
string which may contain the following placeholders.

Attribute Notes

%T Timestamp of log event, e.g. “Mon Jul 06 09:41:33 2009”. This is not
generally required since the Apache error log output already contains a
timestamp.

%H High Resolution Timestamp providing time up to microseconds, e.g.
“Mon Jul 06 09:41:33.072831 2009”.
Accuracy is restricted by system clock.

%L Level of output, either “log” or “debug”.

%U Current logged-in username.

December 2013 Working with Jarvis – v5.4.2 11/72

Attribute Notes

%D Requested dataset name.

%A Requested application name.

%P Process ID of slave process.

%M Message text to be logged.

Table 2: Log Format Placeholders

 4.3.5 Configuration: page_limit_param, page_start_param

This defines the name of the CGI parameters which should be interpreted as providing server-side
page requests. Different RIA frameworks use different defaults. For example, the ExtJS PagingBar
widget uses “limit” and “start”.

Whatever parameters are configured for these values (including defaults) you should make sure that
your queries do not attempt to use CGI parameters with the same name in their fetch queries,
otherwise you will find data being unexpectedly page-sliced.

If CGI parameters of the specified name are found in the CGI fetch request, then Jarvis will do the
following:

• Extract ALL records from the database query.

• Slice out and return only those rows specified by the page parameters. E.g start = 50, limit =
25 means return rows with zero-based indexes 50-74.

• Return “fetched” as the total number of all rows read from the database query.

• Return “returned” as the number of data rows from the sliced page.

• Return only the actual data rows from the sliced page.

Fetching all rows on the server does incur overhead between Jarvis and the database. However, it
has the advantage that we can tell the client exactly how many rows it is paging among.

 4.3.6 Configuration: sort_field_param, sort_dir_param

This defines the name of the CGI parameters which should be interpreted as providing server-side
page requests. Different RIA frameworks use different defaults. For example, the ExtJS PagingBar
widget uses “sort” and “dir”.

Whatever parameters are configured for these values (including defaults) you should make sure that
your queries do not attempt to use CGI parameters with the same name in their fetch queries,
otherwise you will find data being unexpectedly server-side sorted.

When the CGI parameter named by sort_field_param is present, Jarvis will perform the following.

• Extract ALL records from the database query in the default query sort order.

• Use Perl “cmp” alphabetical sorting either ascending or descending.

• Return the rows in the Perl-sorted order.

Note that the column named in the sort field parameter is case-sensitive and must match the exact
column name returned by the <select> query in the dataset definition.

Note that the Perl “cmp” sorting may very well be different from the databases ORDER BY

December 2013 Working with Jarvis – v5.4.2 12/72

sequencing.

Note that if the sort_field_param is present but the sort_dir_param is not, then the sort order will be
ascending.

Note that the sort_dir_param is based on the first letter of the value. A direction starting with “a” or
“A” means ascending. A direction starting with “d” or “D” means descending.

 4.3.7 Configuration: dataset_dir

This defines the location of the XML datafiles which comprise the application's datasets.

More than one dataset directory may be specified, with a unique combination of:

• Dataset Type

• Dataset Prefix

At least one dataset directory must be defined, unless your application really has no datasets. I.e.
unless your application consists entirely of exec and plugin actions.

If multiple “dataset_dir” entries are defined, they must each have a unique “prefix”.

Attribute Default Notes

prefix <empty-string> This is the prefix for incoming dataset names which determine
which dataset_dir entry is used for locating the matching
datasets. If omitted/empty then all dataset names will match.

A trailing “.” is automatically added to the prefix.

If an incoming dataset name matches multiple dataset_dirs the
longest-matching prefix is used.

type dbi Specify the type of datasets contained within this directory.
• “dbi” (SQL databases using default DBI driver).
• “sdp” (SSAS datapump via SOAP requests).

This is used to locate a suitable database definition for
executing the dataset.

dbname default Specifies the default database name to use for datasets in this
directory. Can be overridden on a per-dataset basis.

[content] <n/a> The content inside the <dataset_dir> element is the path to the
directory within the server file system.

Note the following:

• The client-supplied dataset name must not include the “.xml” suffix added by the server.

• The matched prefix is stripped from the dataset name before expansion.

• The dataset name specified by the client must consist only of characters from the following
list: “a-z”, “A-Z”, “0-9”, “_” (underscore), “-” (hyphen) and “.” (dot).

• A “.” (dot) character in the dataset name is interpreted as a directory separator by Jarvis. On
Unix-based systems this is a forward-slash. On Windows-based systems, Perl will translate

December 2013 Working with Jarvis – v5.4.2 13/72

the forward slash into a backslash.

• A dataset name specified by the client may not start or end with a dot.

December 2013 Working with Jarvis – v5.4.2 14/72

Consider the following examples for configuration:

 <dataset_dir>/path/to/dataset</dataset_dir>
 <dataset_dir prefix=”other”>/another/path</dataset_dir>

The final dataset location would be as follows:

Client Requests Resulting XML File

my-set /path/to/dataset/my-set.xml

.my-set [Error, may not start with dot]

my-set. [Error, may not end with dot]

folder.myset /path/to/dataset/folder/myset.xml

myset.xml /path/to/dataset/myset/xml.xml

other.set.name /another/path/set/name.xml

Table 3: Examples of Resolving Dataset Names

 4.3.8 Configuration: default_libs

A list of library paths to @INC into the process before attempting to load and execute a plugin,
login, or hook module. For example:

 <default_libs>
 <lib path=”/home/myapp/edit"/>
 <lib path=”/var/www/jarvis"/>
 </default_libs>

When a plugin, library or hook is to be executed, any default library paths defined will be added to
the Perl include path. After that, any "lib" parameter specifically set on the plugin, library or hook
will be added, and will take precedence over the default_libs path.

 4.3.9 Configuration: method_param

There is currently a limitation with Adobe Flex which appears to restrict non-proxied requests to
using only the GET and POST methods. This naturally causes a problem when using RESTful
web-services.

To work around this problem, Jarvis uses an approach similar to other web-services which allows a
GET or POST parameter to override the supplied http request method when determining the nature
of the action (insert, update, delete) to be performed.

By default, the “_method” CGI parameter is used for this purpose.

 4.3.10 Configuration: login

Every application must have a login module defined. Jarvis offers half a dozen login modules to
handle commonly used situations. You can easily add your own by copying and modifying the
supplied defaults.

Login configuration is the subject of a separate chapter. A complete list of Jarvis-supplied modules
is given in that section, along with all associated configuration parameters.

December 2013 Working with Jarvis – v5.4.2 15/72

 4.3.11 Configuration: database

This is a sub-element which must contain the following attributes:

Attribute Default Notes

type dbi Either “dbi” or “sdp”.

name default You may have one default “dbi” database and one default
“sdp” database. The correct one will be selected to match the
type parameter on the “dataset_dir” definition.

For a simple database connection, the default name of
“default” is fine. If your application wishes to use more than
one database instance of a type, use this field to distinguish
them.

Within each dataset you may specify the database name to be
used for executing that dataset.

connect dbi:Pg:<app-name> For “dbi” databases, this is a DBI connection string. e.g.
 dbi:Sybase:server=10.42.2.8;database=Demo

For “sdp” databases, this is a SOAP proxy address, e.g.:
 http://10.42.2.8/ssas_datapump/msmdpump.dll

username <empty-string> This is the username Jarvis uses to connect to the database for
all requests.

password <empty-string> This is the password Jarvis uses to connect to the database for
all requests.

prepare <empty-string> Optional parameters passed on to DBI::prepare. Example:
<database connect=“...” prepare=“pg_server_prepare => 0”/>

post_connect <empty-string> For “dbi” databases, an SQL command that is executed
immediately after a connection has been established. E.g.
<database connect=“...” post_connect=“SET
ANSI_WARNINGS, ANSI_PADDING, ANSI_NULLS,
ARITHABORT, QUOTED_IDENTIFIER,
CONCAT_NULL_YIELDS_NULL ON;”/>

Table 4: Database Configuration Attributes

For SOAP, the username and password are provided as “basic authentication” credentials.

The configuration of an HTTP SOAP Data Pump service is outside the scope of this document.

In addition, the database configuration supports additional contained “dbh_attributes” tags which
are passed to the DBI->connect() method when logging into the database. For example:

 <database connect="dbi:Sybase:server=192.168.1.5;database=mydb"
username="sa" password="sa">
 <dbh_attributes>
 <attribute name="syb_chained_txn" value="0"/>
 </dbh_attributes>

 <post_connect>

December 2013 Working with Jarvis – v5.4.2 16/72

 SET ANSI_WARNINGS, ANSI_PADDING, ANSI_NULLS, ARITHABORT,
QUOTED_IDENTIFIER, CONCAT_NULL_YIELDS_NULL ON;
 </post_connect>
 </database>

Each dbh_attributes sub-element named “attribute” has a “name” and “value” attribute. These
parameters are passed directly to DBH->connect() method, in the fourth parameter.

Note when connecting to MS SQL Server on a Linux platform via the DBD::Sybase driver, using
DBD::Sybase versions later than v1.00, the use of the DBH attribute “syb_chained_txn” is required,
lest the following error occur:

The COMMIT TRANSACTION request has no corresponding BEGIN TRANSACTION. Server
message number=3902 severity=16 state=1 line=2

 4.3.12 Configuration: sessiondb

This defines the session database. Sessions are created and managed with the Perl CGI::Session
module. Refer to the documentation for that module for a more detailed description of
configuration options available for the store and expiry parameters.

Configuration as follows.

Attribute Default Notes

store driver:file;serializer
:default;id:md5

This tells CGI::Session to use file-based cookies. See
CGI::Session man page for further information.

cookie <APPNAME>
_CGISESSID

Default session cookie name is <APPNAME>_CGISESSID. If
you are serving multiple Jarvis applications on the same host,
then ensure that each one uses a separate cookie name.

expiry +1h Specifies the extension period for the cookie after every
successful Jarvis interaction.

sid_source cookie The places where Jarvis should look for the SID. This is a
comma-separated string of the following options:

• cookie - Look in the cookie (as per the 'cookie'
attribute).

• url - Look in the parameters passed in the URL. The
URL parameter is expected to be the name provided in
the “cookie” attribute.

The order these are listed is relevant. For example “url,cookie”
means that the URL parameters will be looked at first, then, if
the relevant parameter cannot be found, the cookie list will be
searched.

Table 5: Session DB Configuration Parameters

In addition, the sessiondb configuration supports additional contained “parameter” tags, according
to the CGI::Session driver type selected.

 <sessiondb store="driver:file;serializer:default;id:md5"

December 2013 Working with Jarvis – v5.4.2 17/72

 expiry="+3M" cookie="APP_CGISESSID" sid_source="cookie">
 <parameter name="Directory" value="/home/myapp/tmp/sessions"/>
 </sessiondb>

Each parameter sub-element has a “name” and “value” attribute. These parameters are passed
directly to CGI::Session. The only documented parameter is “Directory” for the “file” driver. For
other parameters, see the CGI::Session man page.

Name Default Notes

Directory (System TMP Dir) This specifies the location for storing CGI sessions on local disk.
The default directory is operating system dependent.

Table 6: Session DB File Driver Parameters

Note that if you omit the <sessiondb> tag entirely, then Jarvis will not maintain a session cookie.
Instead, every Jarvis request will invoke the full Login check sequence as configured by your
<login> settings.

The following considerations apply:

With Jarvis <sessiondb> and cookie. Without Jarvis <sessiondb> or cookie.

More secure. No need to pass “username” and
“password” in each request.

This is a key point. If the login settings you are
using requires a username and/or password then
in general a <sessiondb> is recommended.

Less secure. If the user is blocked in the
underlying database, they can still continue to
access Jarvis as long as the cookie is valid.

More secure. If the user is blocked in the user
database, they are immediately locked out of
Jarvis access.

More efficient. No need to re-perform the full
login sequence for each request.

More secure. If login configuration is setup to
check on Certificate or IP address, it would be
better to perform this check on every request.

User Changes Ignored. If the Jarvis session is
piggybacking on another session (e.g. a
Drupal6) then re-logging to a new Drupal user
will not be picked up by Jarvis. It will blindly
and wrongly continue its session for the old user.

User Changes Detected: Any changes to the
parent session will be immediately detected by
Jarvis.

Table 7: Advantages/Disadvantages of Jarvis <sessiondb>

 4.3.13 SID source: URLs vs Cookies

With the “sid_source” parameter available in the sessiondb configuration, client system can be
written to provide the necessary session ID information via either the URL, cookies, or both. This
section details the considerations when dealing with each.

1. Cookie-only based authentication. The default approach to session management is for Jarvis
to store session ID's in a HTTP cookie. This cookie is returned to the client with every
successful request to Jarvis. This approach:

a) Requires no specific support by client applications. Web browsers will transfer the
cookie automatically with every request.

December 2013 Working with Jarvis – v5.4.2 18/72

b) Allows web-browser applications to have the same session across all open windows.
E.g. this allows users to open many browser tabs/windows into the application, and all of
these will use the same session ID.

c) Allows users to, within the session timeout, re-access web based systems without
retyping their username/password.

2. URL based authentication. This approach requires the session ID to be passed in a URL
parameter (or HTTP POST parameter) on each request. Unlike cookie based systems, this
approach requires explicit support by the client. This approach:

a) Without explicit support in the application to manage and support it, each new window
or tab opened for a web-based application will require the user to log back into the
application. In many situations this is highly undesirable.

b) Conversely, it does mean that web-based applications can be designed to allow a user to
log in multiple times to the same system within the same browser – something the
cookie based approach does not allow (as cookies are browser-wide, not per window or
per tab).

3. URL based authentication, with a cookie-based secondary fallback. This approach, available
when sid_source is given as “url,cookie”, allows the best of both of the above approaches,
but does require explicit support in the application. With this approach:

a) Jarvis will first examine the URL for the SID parameter, and then try the cookie.

b) The client system can by default use cookie based SIDs, and then switch to using URL
based SIDs when necessary (e.g. when the user wants a secondary login to the
application).

c) One example of when this is useful is when most of the time users require only a single
session, but for some users it is important to provide the ability to log in as multiple
people. With cookie based SIDs users would need to use different browsers (or browser
profiles) to get this, and with URL based SIDs users would lose the ability to have
multiple tabs open to the same application.

Note in the URL & cookie based authentication method above, Jarvis will ensure that cookies are
only used when the SID is retrieved from the cookie. This avoids URL based sessions trampling
cookie based sessions.

 4.3.14 Configuration: exec & plugin & hook

In addition to any SQL procedures in your dataset, Jarvis also supports several different ways to
integrate additional Perl or command line functionality into your application. These are configured
in the main application XML file. The different mechanisms are:

• exec – An “exec” configuration defines a special dataset which is fetched by spawning a
custom sub-process. Use this when you wish to use Jarvis security and pre-processing, but
the actually response content is to be provided by an external program, e.g. running reports.

• plugin – A “plugin” configuration also defines a special dataset which is fetched by loading
a custom Perl module written as a “.pm” file. Use this when you wish to use the Jarvis
interface but the dataset content or insert/update is too complex to easily express in SQL,
and you wish to implement it in Perl code.

• hook – A “hook” is a custom Perl module containing specially named methods which are
invoked at key points in then processing of all datasets. Use this when you wish to perform

December 2013 Working with Jarvis – v5.4.2 19/72

additional security checking, custom logging or auditing for all datasets.

The dataset names configured for “exec” and “plugin” commands should each have a unique dataset
name which does not conflict with any other “plugin” or “exec” dataset, does not conflict with any
regular dataset, and which does not conflict with any of the predefined built-in special dataset
names (e.g. '__status', '__habitat' and '__logout').

See the separate chapters on “Exec Dataset”, “Plugin Datasets” requests and on “Hook Modules”
for further details.

 4.3.15 Configuration: habitat

This is a static piece of content to be returned to any caller who invokes the '__habitat' special
dataset. Note that no login is required in order to access the habitat string. It is entirely insecure.

Standard use of a habitat is to allow an application to run in separate environments (e.g. production,
testing, etc.) and to have different configuration in those environments. E.g. the application may
examine the habitat and decide to change its visual appearance to show users that it is a test
environment. This can be done prior to login.

See the separate section on “Habitat” requests for further details.

December 2013 Working with Jarvis – v5.4.2 20/72

 5 Login Module Configuration

 5.1 Standard Modules

Jarvis uses a pluggable login module mechanism. The following modules are provided in the
installed Jarvis "lib" directory:

• ActiveDirectory.pm
• BasicAuth.pm
• Database.pm
• Adempiere.pm
• Drupal6.pm
• None.pm
• Single.pm

All modules are configured by a "login" element with the following parameters.

Attribute Default Notes

module <none> Full name of the module to load, e.g. Jarvis::Login::None.

lib <none> Optional base library directory in which to find the module. Note
that the "default_libs" are also searched.

parameter <none> One or more sub-parameters with "name" and "value" attributes.

require_post no If true, prevent usage of URL parameters username/password for
login purposes.

Setting require_post to true is recommended to avoid logging of usename/password as part of the
request URL.

 5.2 Active Directory Login

This Login module will query a Microsoft ActiveDirectory server. Example configuration is:

<jarvis>
 <app>
 <login module="Jarvis::Login::ActiveDirectory">
 <parameter name="server" value="company­pdc"/>
 <parameter name="bind_username" value="bind user"/>
 <parameter name="bind_password" value="bindpass"/>
 <parameter name="base_object"
 value="OU=OFFICE,DC=COMPANY,DC=LOCAL"/>
 </login>

December 2013 Working with Jarvis – v5.4.2 21/72

The parameters are.

Attribute Default Notes

server <none> IP address or resolvable DNS name locating the primary domain
controller. Mandatory. Secondary controllers are not supported.

port 389 IP port number.

bind_username '' The username to be specified at the bind attempt.

bind_password '' The password to be specified at the bind attempt.

base_object <none> The base object to be specified in the search request. Mandatory.

no_password 0 If set true, the module will skip the password checking.

allowed_groups '' Comma-separated list of groups. If specified, restricts login to users
with group in allowed groups. Wildcard * is supported.

Table 8: Active Directory Login Module Parameters

The module will bind to the AD server with the bind username and password. It will request a
search of the full tree below the base object, with full dereferencing. The filter is for
“samaccountname” equal to the username offered to Jarvis for this login attempt. We ask the search
to tell us of all “memberOf” attributes for this group.

If the user exists, Jarvis then assembles the grouplist from the memberOf parameters returned.
Then Jarvis unbinds, and attempts to rebind with the user-supplied username and password, instead
of the plugin-defined values. If the rebind succeeds, then the user is validated.

 5.3 Basic Auth Login

This login module expects Apache's BasicAuth mechanism to perform the password checking.

Example configuration (not using client certificates) is:

<jarvis>
 <app>
 <login module="Jarvis::Login::BasicAuth">
 <parameter name="group_list" value="staff"/>
 </login>

Example configuration (using client certificates) is:

<jarvis>
 <app>

 <parameter name="require_https" value="yes"/>
 <parameter name="remote_ip" value="10.42.2.100"/>
 <parameter name="remote_user"
value="/C=NZ/ST=State/O=Company/CN=User Name Here"/>

 <parameter name="username" value="admin"/>
 <parameter name="group_list" value="admin,staff"/>

 </login>

December 2013 Working with Jarvis – v5.4.2 22/72

The parameters are.

Attribute Default Notes

require_https no If “yes” then we require the connection to be HTTPS not HTTP.

remote_ip <none> If specified, this is a comma-separated list if IP addresses, one of which
must be an exact match on the user's IP address.

remote_user <none> This specifies the username exactly as it is specified in the Apache
HTTP password file granting BasicAuth access to the user. If this is not
specified then any BasicAuth user will be allowed access.

username <none> Jarvis username which the user will be granted. If not specified, the
name passed from Apache BasicAuth will be used.

group_list <none> This is the comma-separated Jarvis group list to grant to this user. If not
specified, then a single group with name identical to the assigned Jarvis
username will be used.

Table 9: BasicAuth Login Module Parameters

In the first example, we are using standard Basic Auth. Any client IP address is permitted. HTTPS
is not required. Any configured basic auth username is allowed, and their Jarvis username will be
the same as the username provided to Apache. All users will belong to a single group named 'staff'.

In the second example we are using Apache FakeBasicAuth and Client certificates. HTTPS is
required. Only access from the specified source IP address is permitted. Only the specified
certificate Distinguished Name is permitted, exactly as given.

Note that Apache's FakeBasicAuth uses slashes instead of commas when deriving the DN. This
matches what is configured for the client certificate in the Apache password file. The Jarvis
username will appear as “admin” and the user will belong to two groups: “admin” and “staff”.

 5.4 Database Login

This module performs username and password lookup in the configured database. Example:

<jarvis>
 <app>
 <login module="Jarvis::Login::Database">
 <parameter name="user_table" value="staff"/>
 <parameter name="user_id_column" value="id"/>
 <parameter name="user_username_column" value="name"/>
 <parameter name="user_password_column" value="password"/>
 <parameter name="group_table" value="staff_group"/>
 <parameter name="group_username_column" value="name"/>
 <parameter name="group_group_column" value="group_name"/>
 </login>

The parameters are.

Attribute Default Notes

dbname default The name of the database connection to use. Default =
“default”.

December 2013 Working with Jarvis – v5.4.2 23/72

Attribute Default Notes

user_table <none> Name of the database table containing username and
password columns. Mandatory.

user_id_column <none> Name of username ID column. Optional.

user_username_column <none> Name of the username column. Mandatory.

user_password_column <none> Name of the password column. Mandatory.

group_table <none> Optional group table containing username/group pairs.

group_username_column <none> Name of the username column in the group table.

group_group_column <none> Name of the group name column in the group table.

encryption none Specifies the encyption method for the password. This can be
one of:

• none – no encryption.
• md5 - the md5 hash algorithm is used, with optional

salt.
• eksblowfish – the Eksblowfish encryption algorithm

is used. Salt is hard coded to 16.

Note: it is strongly suggested that eksblowfish is used, for
reasons outlined here:

http://paulbuchheit.blogspot.com/2007/09/quick-read-this-if-
you-ever-store.html.

salt_prefix_len 0 If configured to a value > 0, then encrypted passwords are
encoded with a salt prefix to hamper dictionary attacks.
Currently only necessary for the 'md5' encryption method.

For MD5, the hex-encoded MD5 hash value is expected to be
prefixed by exactly this number of ASCII salt characters.
The salt characters are pre-pended to the user-supplied
password before generating the MD5 hash.

Table 10: Database Login Module Parameters

The three user parameters are mandatory. In order to perform group lookup, all three “group”
parameters must be configured. If not, all users will be placed in a single group named “default”.

If the "user_id_column" parameter is defined, then it must specify the name of an additional
database column in the user table. When configured, the value from this column matching the
supplied username will be stored in a "safe" variable which can be accessed as {$__user_id} in
datasets.

 5.5 Adempiere Login

This module performs username and password lookup in the configured Adempiere database.
Currently this module supports login for only a single client and organization.

The following tables are referenced:

• ad_user

December 2013 Working with Jarvis – v5.4.2 24/72

http://paulbuchheit.blogspot.com/2007/09/quick-read-this-if-you-ever-store.html
http://paulbuchheit.blogspot.com/2007/09/quick-read-this-if-you-ever-store.html

• ad_user_roles
• ad_role
• ad_window_access
• ad_process
• ad_process_access

Example:

<jarvis>
 <app>
 <login module="Jarvis::Login::Adempiere">
 <parameter name="client_name" value="MyClientName"/>
 <parameter name="org_name" value="MyOrgName"/>
 </login>

The parameters are.

Attribute Default Notes

dbname default The name of the database connection to use. Default =
“default”.

client_name <none> Name of the single Adempiere client (table ad_client) for
whom we allow login via this method. Mandatory.

org_name <none> Name of the single Adempiere organization (table ad_org)
for whom we allow login via this method. Mandatory.

reverse_dns No Should we perform reverse DNS to fill the remote_host field
in the ad_session table. In some cases reverse DNS can be
very slow.

relevant_groups A comma-separated list of the groups relevant to the
application. ADempiere provides a large number of groups,
and this parameter can be used to alter the group-list for each
user to a smaller subset of their groups.
Wildcard * is supported.

allowed_groups '' Comma-separated list of groups. If specified, restricts login
to users with group in allowed groups. Checked after filtering
for relevant groups.
Wildcard * is supported.

Table 11: Adempiere Login Module Parameters

The determined group list is a long comma-separated string where each of the many elements is
either:

• role-<role_name> For each active user role.
• read-<window_name> For each active window access (read access)
• write-<window_name> For each active window access (write access), and any

processes the user has access to.

All spaces and special characters are stripped from the role name and window names.

So for window "My Window", your corresponding dataset is likely to have access settings

 read="read­MyWindow,write­MyWindow" write="write­MyWindow"

December 2013 Working with Jarvis – v5.4.2 25/72

Note that when this module is used to login, any dataset requests will also have access to the
following additional variables:

“__ad_user_id”
“__ad_client_id”
“__ad_org_id”
“__ad_session_id”

These variables contain the corresponding numeric ID values found to match the configured
client_name and org_name parameters. These variables can be accessed in a dataset e.g. by
specifying {$__ad_client_id}. These are “safe” variables in the same sense as e.g. the
“__username” variable in that they are set purely by Jarvis and cannot be set or modified by the
remote client.

 5.6 Drupal6 Login

This module performs two functions:

1. Check to see if an existing, valid Drupal session cookie is defined.

2. Perform basic username and password lookup in a Drupal6 database.

The second step is performed only if there is no existing Drupal session cookie available and only if
the “allow_login” parameter is enabled.

The following Drupal tables are accessed:

• users

• sessions

You will typically need login to the database as the database owner and grant the webserver user
read access to these tables, e.g.:

postgres# GRANT SELECT ON users TO "www­data";
postgres# GRANT SELECT ON sessions TO "www­data";

Example configuration:

<jarvis>
 <app>
 <login module="Jarvis::Login::Drupal6">
 <parameter name="allow_login" value="yes"/>
 <parameter name="admin_only" value="yes"/>
 <parameter name="admin_group" value="admin"/>
 </login>

The parameters are.

December 2013 Working with Jarvis – v5.4.2 26/72

Attribute Default Notes

dbname default The name of the database connection to use. Default =
“default”.

login_type drupal drupal = We insist on an existing Drupal session cookie.
jarvis = Jarvis performs session login and management.

admin_only no Is the user required to be the primary administrator (uid = 1).

admin_group admin What group is assigned to the user with (uid = 1).

Table 12: Drupal6 Login Module Parameters

The determined group list is:

• <admin_group> For the user with uid = 1.
• <role1>,<role2> For all other users, taken from the users_roles table.

Note that when this module is used to login, any dataset requests will also have access to the
following additional variables:

“__uid”

This variable contains the uid value from the Drupal6 “users” table. It can be accessed in a dataset
e.g. by specifying {$__uid}. This is a “safe” variables in the same sense as e.g. the “__username”
variable in that it is set purely by Jarvis and cannot be set or modified by the remote client.

Login Type “drupal”

When using “login_type=drupal”, you must have an existing Drupal session in order to perform a
Jarvis login. With this setting, Jarvis will never accept a username and password. Only Drupal
may perform the username and password validation.

Jarvis performs its validation by looking for a Drupal session cookie and comparing it against list of
cookies in the “sessions” table of the Drupal database. Note that currently the Drupal database must
be the same database which Jarvis uses for fetching data for dataset requests. In the future, the
Drupal6 module may allow you to specify a different database connection path for user validation.

Note that when using Login Type “drupal” you most likely will want to disable the Jarvis session
database, by removing the <sessiondb> tag from your application configuration file. This is so that
if the user logs out of Drupal, or changes their Drupal username by re-logging, then Jarvis will
immediately detect this change.

Login Type “jarvis”

When using “login_type=jarvis”, then Jarvis will ignore any existing Drupal session. Instead, you
must create a Jarvis session by providing the username and password of a valid Drupal user. The
username and password are checked against the Drupal6 database, but Jarvis will never create a
Drupal6 session.

Jarvis will create its own session, stored in the session database configured by the <sessiondb> tag.
This session remains entirely independent of any Drupal session that may be created by logging in
to Drupal. Logging out of Drupal will not affect your access to Jarvis so long as the Jarvis cookie
remains valid.

 5.7 None Login

This module automatically performs login and allocates hard-coded username and group values. It

December 2013 Working with Jarvis – v5.4.2 27/72

is useful for quick testing of applications. Example configuration is:

<jarvis>
 <app>
 <login module="Jarvis::Login::None">
 <parameter name="username" value="admin"/>
 <parameter name="group_list" value="admin"/>
 </login>

The parameters are.

Attribute Default Notes

username <none> User name to assign to all logins.

group_list <none> Comma-separated group list to assign to all logins.

Table 13: None Login Module Parameters

 5.8 Single Login

This module is slightly more secure than the None module. It is very limited in that it allows for a
single username only, but it does provide at least some security checking:

• Remote (client) IP address match, and/or

• Client must supply username and password, and/or

• HTTPS protocol is required.

An example configuration is:

<jarvis>
 <app>
 <login module="Jarvis::Login::Single">
 <parameter name="require_https" value="no"/>
 <parameter name="remote_ip" value="127.0.0.1"/>
 <parameter name="username" value="bob"/>
 <parameter name="password" value="test"/>
 <parameter name="group_list" value="default"/>
 </login>

The parameters are.

Attribute Default Notes

username <none> User name to assign to anybody who successfully logs in using
this module.

group_list <none> Comma-separated group list to assign to all logins using this
module. If not specified, a single group identical to the username
will be assigned.

December 2013 Working with Jarvis – v5.4.2 28/72

Attribute Default Notes

password <none> If configured then the client must supply both “username” and
“password” as CGI parameters when logging in to obtain a session
cookie, and both supplied values must match the configured
values.

If not-configured (or configured empty) then any “username” and
“password” supplied by the client will be ignored. The configured
“username” parameter will be used as the username.

remote_ip <none> If configured then the client's remote IP address must exactly
match one of the addresses. This may be a single address or a
comma-separated list.

require_https no If configured “yes”, then the client connection must be HTTPS.

Table 14: Single Login Module Parameters

Note that at least one of “remote_ip” or “password” must be configured.

December 2013 Working with Jarvis – v5.4.2 29/72

 6 Special Datasets & Jarvis Login

 6.1 Jarvis URLs

Now let's consider how to access Jarvis. The following examples assume that:

• Jarvis has been installed/configured as above, and is available via the web-server.
• The demo.xml file has been soft linked or copied into the Jarvis "etc" directory.
• The directory paths in demo.xml have been correctly configured.

 6.2 The __status Dataset

The __status dataset (with two leading underscores) is a special dataset which allows your
application to determine the user's login status without actually performing a data request.

To access the __status dataset in your web browser, send a GET request to the following URL.

http://localhost/jarvis­agent/demo/__status

This is a specific example of the general Jarvis URL format which is.

http://localhost/jarvis­agent/<app­name>/<dataset>[/<p1>[/<p2>...]]

This is a RESTful URL which specifies an application name “demo”, then a dataset within that
application. If Jarvis and the demo app are correctly configured, then the response should be
JavaScript Object Notation (JSON) response with a Content-Type of “plain/text”.

{
 "error_string" : "",
 "logged_in" : 1,
 "group_list" : "admin",
 "username" : "admin"
}

This is a response object with four attributes.

When logged_in = 0, username and group_list will always be empty and the error_string will be a
non-empty description of why the login failed.

Conversely if logged_in = 1 then the error_string will always be empty, username will always be
non-empty, and group_list contains a possibly zero-length comma-separated list of groups.

Note that it is not always necessary to be logged in to access a dataset. The special datasets are
available to non-logged-in users. Also the dataset creator may offer user-defined datasets to
non-logged-in users by specifying “**” as the access string in the dataset XML definition.

To receive responses in XML format, either configure the default format as “xml” in the demo.xml
file, or pass “format” as a CGI parameter. E.g.

http://localhost/jarvis­agent/demo/__status?format=xml

The response is also Content-Type “plain/text” but with XML content. The same object is returned
as in the JSON case, but in XML.

December 2013 Working with Jarvis – v5.4.2 30/72

<?xml version="1.0" encoding="iso­8859­1" ?>
<?meta name="GENERATOR" content="XML::Smart/1.6.9 Perl/5.010000 [linux]" ?>
<response error_string="" group_list="admin" logged_in="1" username="admin"/>

 6.3 The __habitat Dataset

The __habitat dataset provides a simple method for an application configuration file to pass some of
its configuration directly back to the client application instance. BE WARNED. Your HABITAT is
PUBLIC. Login is not required in order to view the habitat.

The habitat is configured in the applications configuration file. The habitat is returned essentially
verbatim, however there a difference between JSON and XML habitat returned handling.

 6.3.1 JSON Habitat

This is how you might define a JSON habitat. If your requested format is non-XML (e.g. JSON),
we will strip the outer <habitat> tags for you.

<jarvis>
 <app>
 <habitat><![CDATA[hargs: {
 install_type: 'production'
}]]></habitat>

The return from the query:

http://localhost/jarvis­agent/demo/__habitat?format=json

will be:

hargs: {
 install_type: 'production'
}

 6.3.2 XML Habitat

In the XML case, the habitat is returned as an XML object, parsed and then re-encoded. This means
that the habitat returned will be logically equivalent, but may not necessarily be byte-for-byte
equivalent to what is defined in the application configuration file.

<jarvis>
 <app>
 <habitat>
 <install_type>production</install_type>
 <parameter name="pname" value="some_value"/>
 <parameter name="another" value="a_different_value"/>
 </habitat>

With the above habitat, requesting in XML:

http://localhost/jarvis­agent/demo/__habitat?format=xml

The result returned to the client will be:

December 2013 Working with Jarvis – v5.4.2 31/72

 <install_type>production</install_type>
 <parameter name="pname" value="some_value"/>
 <parameter name="another" value="a_different_value"/>

 6.4 The __logout Dataset

Invoking the “__logout” dataset will cause the server-side session ID to be erased from the session
store.

Note that when using the “None” Login module, erasing the cookie is all well and good, but the
very next request will always automatically re-login and create a new cookie and session ID.

 6.5 Logging-In to Jarvis

Using the “__status” and “__logout” datasets, you can login and logout of Jarvis.

To login to Jarvis, make any request to Jarvis, and include the following parameters:

• “username”

• “password”

Jarvis will perform the configured login process, and will always create a server-side session. The
session ID will be returned in the response headers as a cookie. The default cookie name is
CGISESSID. This can be configured to avoid conflict if multiple applications are using session
cookies on the same server.

Even if the login fails, a session cookie will still be returned. For maximum efficiency and security,
your application should supply “username” and “password” only on the very first request, and
should pass the session cookie subsequently. The session cookie lifetime will be extended on every
successful request. The exception to this is “exec” and “plugin” requests which create their own
response headers.

Any request may be used to perform session login. However, the convention is to only perform
login as part of a “__status” request.

Note that the “__status” response parameters (error_string, logged_in, username, group_list) are
also included in data fetch results returned by Jarvis. However, they are not included in the
responses to dataset modification requests.

 6.6 Jarvis Error Responses

Exception handing is an important part of any application, especially so when dealing with
client/server web-services.

Compilation Failure

When the Jarvis scripts fail to compile, you will receive a “500 Internal Server Error” generated by
Apache.

Authorization Required

When access is requested to a resource which requires login, or which requires membership of a
group not in the current user's group list, then a “401 Unauthorized” is returned with a “text/plain”
content body which describes the failure reason. It may also include the script line number.

The calling application should invoke the “__status” dataset to ensure that the user is logged-in, and
log them in if required.

December 2013 Working with Jarvis – v5.4.2 32/72

No Such Dataset

When access is requested to a dataset which does not match a plugin, exec, special dataset, or
regular dataset, then a “404 Not Found” is returned with a “text/plain” content body which names
the not-found dataset. It may also include the script line number.

Request/Configuration Error

Otherwise, if Jarvis compiles but identifies a fatal problem not related to dataset access permissions
or unknown dataset, it will return a Jarvis-generated “500 Internal Server Error” request, with a
response body which gives a description of the problem.

• Internal configuration problem – bad server-side XML configuration (main or dataset).

• Database connection problem.

• Request body is malformed JSON or XML.

• Missing mandatory parameter in request.

• Any other fatal problem.

• Configured SQL statement in dataset definition is not valid.

• Invalid value for select parameter.

Store Errors

Store errors are errors related to the actual user-supplied data values being rejected by the database.
These occur when Jarvis cannot insert/update/delete data due to primary key, foreign key, unique
constraints or bad type.

In such cases, a “200 Success” result is returned, but the “success” attribute in the returned JSON or
XML will indicate the failure, and a “message” parameter will indicate the reasons.

December 2013 Working with Jarvis – v5.4.2 33/72

 7 Fetch Results

 7.1 Format = json

Consider the Demo application supplied with Jarvis. This application uses the “json” format. The
following chapter will describe the definition of datasets and the use of parameters. For now we
consider only the structure of the returned content.

http://localhost/jarvis­agent/demo/boat_class

The JSON format response for a data fetch is wrapped in an outer object.

• The returned tuples are contained in an array with object key “data”.

• Each tuple is represented as an object. Missing fields are omitted.

Response is:

{
 "data" : [
 {
 "active" : "Y",
 "class" : "Makkleson",
 "id" : "6",
 "description" : "Suitable for infants and those of timid heart."
 },
 {
 "active" : "N",
 "class" : "X Class",
 "id" : "4",
 "description" : "Product of a deranged mind."
 }
],
 "fetched" : 2,
 "returned" : 2,
 "error_string" : "",
 "logged_in" : 1,
 "group_list" : "admin",
 "username" : "admin"
}

Top level attributes are:

Attribute Notes

fetched The number of rows fetched from the SELECT, before any server-side paging.

returned The number of rows returned after any server-side paging.

error_string Refer to the “__status” dataset notes.

logged_in Refer to the “__status” dataset notes.

group_list Refer to the “__status” dataset notes.

username Refer to the “__status” dataset notes.

Table 15: Dataset Fetch Top-Level Attributes

December 2013 Working with Jarvis – v5.4.2 34/72

 7.2 Format = json.array

The JSON Array format response for a data fetch is wrapped in an outer object.

• The returned tuples are contained in an array with object key “data”.

• Each tuple is represented as an array.

• The column names are given separately

• The order of the array elements for each tuple matches the given column order.

• Empty elements in the array are given as as JSON null value.

Consider the following request:

http://localhost/jarvis­agent/demo/boat_class?format=json.array

Response is:

{
 "data" : [
 [
 "Y",
 "Makkleson",
 "Suitable for infants and those of timid heart.",
 1
],
 [
 "N",
 "X Class",
 "Product of a deranged mind.",
 2
]
],
 "logged_in" : 1,
 "group_list" : "admin",
 "username" : "admin",
 "returned" : 2,
 "columns" : [
 "active",
 "class",
 "description",
 "id"
],
 "fetched" : 2,
 "error_string" : ""
}

 7.3 Format = xml

The XML format response for a data fetch is wrapped in an outer object.

• The returned tuples are contained in a “data” element.

• Each tuple is represented as a “row” element.

• Fields are specified as attributes of the “row” element.

December 2013 Working with Jarvis – v5.4.2 35/72

Consider the following request:

http://localhost/jarvis­agent/demo/boat_class?format=xml

The returned content in XML is:

<?xml version="1.0" encoding="iso­8859­1" ?>
<?meta name="GENERATOR" content="XML::Smart/1.6.9 Perl/5.010000 [linux]" ?>
<response logged_in="1" username="admin" error_string=""
 group_list="admin" fetched="2" returned="2">
 <data>
 <row active="Y" class="Makkleson"
 description="Suitable for infants and those of timid heart." id="6"/>
 <row active="N" class="X Class"
 description="Product of a deranged mind." id="4"/>
 </data>
</response>

 7.4 Format = xml.array

The XML Array format response for a data fetch is wrapped in an outer object.

• The returned tuples are contained in a <data> element.

• Each tuple is represented as a <row> element.

• Fields are given in <column> elements within each row.

Consider the following request:

http://localhost/jarvis­agent/demo/boat_class?format=xml.array

The returned content in XML is:

<?xml version="1.0" encoding="iso­8859­1" ?>
<?meta name="GENERATOR" content="XML::Smart/1.6.9 Perl/5.010001 [linux]" ?>
<response fetched="4" returned="4" logged_in="1" username="guest"
error_string="" group_list="default">
 <columns>
 <header index="0" name="active"/>
 <header index="1" name="class"/>
 <header index="2" name="description"/>
 <header index="3" name="id"/>
 </columns>
 <data>
 <row>
 <column index="0" value="Y"/>
 <column index="1" value="Makkleson"/>
 <column index="2" value="Suitable for infants and those of timid
heart."/>
 <column index="3" value="1"/>
 </row>
 <row>
 <column index="0" value="N"/>
 <column index="1" value="X Class"/>
 <column index="2" value="Product of a deranged mind."/>
 <column index="3" value="2"/>
 </row>

December 2013 Working with Jarvis – v5.4.2 36/72

 </data>
</response>

 7.5 Format = csv

The CSV format response for a data fetch is “standard” CSV encoding with a header row.

• The header row gives column names.

• Fields are separated by commas.

• Strings containing spaces or special characters are in double quotes.

• Multi-line strings are supported, a newline character is used.

Consider the following request:

http://localhost/jarvis­agent/demo/boat_class?format=csv

The returned content in CSV format is:

active,class,description,id
Y,Makkleson,"Suitable for infants and those of timid heart.",1
N,"X Class","Product of a deranged mind.",2

 7.6 Format = xlsx

The response is identical in structure to the CSV format. However, it is encoded in XLSX format,
used by Microsoft Excel 2000 and later.

December 2013 Working with Jarvis – v5.4.2 37/72

 8 Datasets and Parameters

 8.1 Dataset Definition

The dataset is defined in a .XML file containing up to four SQL statements. The “boat_class.xml”
file used for the preceding examples is defined as follows.

<dataset read="*" write="*">
 <transform fetch="notnull" store="trim,null" />
 <select>
SELECT id, class, active, description
FROM boat_class
ORDER BY class
 </select>
 <update>
UPDATE boat_class
SET class = {$class},
 active = {$active},
 description = {$description},
 change_user = {$__username},
 change_date = datetime ('now')
WHERE id = {$id};
 </update>
 <insert returning="yes">
INSERT INTO boat_class (class, active, description, change_user, change_date)
VALUES ({$class}, {$active}, {$description}, {$__username}, datetime ('now'));
 </insert>
 <delete>
DELETE FROM boat_class
WHERE id = {$id};
 </delete>
</dataset>

Note the use of the <transform> element to request that data is pre-processed before fetch and save.
The transform tag is described elsewhere. However, in this case we have requested some typical
options:

• On fetch, any NULL value in the database is represented as a zero length string.

• On store, leading and trailing white space should be removed before saving to database.

• On store, empty strings from the client should be stored as NULL in the database.

This example is a basic dataset definition for a CRUD application, with “fetch” (i.e. select) requests
and “store” (i.e. insert, update, delete) requests.

Additional supported features in datasets include:

• <hook> call to a Perl module for additional processing on each request.

• <before> execute an SQL statement once before any store requests are performed.

• <after> execute an SQL statement once after any store requests are performed.

These are described in more detail subsequently.

December 2013 Working with Jarvis – v5.4.2 38/72

The top-level attributes of all datasets definitions are as follows.

Attribute Default Notes

dbname default Specify which database connection should be used for fetching
and storing this dataset. By default, the database named
“default” is used for executing the set.

read <empty> Defines which groups may execute the SQL defined in the
“select” element. This is an access identifer as per the
following table.

write <empty> Defines which groups may execute the SQL defined in the
“update”, “insert” and “delete” elements. This is an access
identifer as per the following table.

debug no Enables debug on a per-dataset basis. Debug starts from the
point that the dataset is successfully loaded. Debug uses the
globally configured debug format and is identical in all regards
to the global debug output.

dump no Enables dump on a per-dataset basis.

filename_parameter filename Specifies the user-supplied parameter which specifies the
filename for the returned attachment when requesting contents
to be returned in “csv” for “xlsx” format.

Table 16: Attributes of the <dataset> Element

The elements within the <dataset> definition for DBI (standard SQL) datasets are as follows:

Element Notes

transform Optional transformations for Jarvis to perform when storing or fetching data.

hook One or more hook module definitions. Definition is identical to global hooks.

select SQL to execute when dataset is invoked with the http GET request method.

before SQL to execute once before performing update/insert/delete changes.

update SQL to execute when dataset is invoked with the http PUT request method.

insert SQL to execute when dataset is invoked with the http POST request method.

delete SQL to execute when dataset is invoked with the http DELETE request method.

after SQL to execute once after performing update/insert/delete changes.

Table 17: Dataset Sub-Elements

The select, update, insert and delete sub-elements support the following sub-parameters:

Sub-element Notes

prepare Optional parameters for statement preparation with DBI::prepare.
<update prepare=“pg_server_prepare => 0, something_else => 1”>
Overwrites global database prepare attributes.

returning For “insert” statement only. Discussed later under the “insert” statement section.

December 2013 Working with Jarvis – v5.4.2 39/72

Sub-element Notes

nolog Suppress logging and tracking of errors matching given pattern. Empty string
matches nothing, otherwise interpreted as perl pattern.

ignore Suppress errors/warnings matching given pattern. Empty string matches nothing,
otherwise interpreted as perl pattern.

The access identifiers are.

Access ID Notes

<empty> Nobody may access these statements.

<g1>[,<g2>...] A comma separated group list. Membership in any one of these groups will
grant access.

“*” Any logged-in group may access this feature.

“**” Any user, even if not logged-in, may access this feature.

Table 18: Access Control Specifiers

This is the same list of options as is used for the access control of “exec” and “plugin” datasets.

 8.2 Dataset Bind Parameters

In nearly all cases, the dataset statements to execute will depend on client-side parameters. In the
general case for SQL queries this is performed by using SQL bind parameters, as follows:

The SQL statements in the dataset query definition may contain bind substitution parameters
defined in curly braces with a preceding dollar symbol. e.g. {$parameter}.

Note: The use of double braces (and/or with missing dollar symbol) is very deprecated and will be
removed at some time in the very near future. E.g. {name}, {{name}}, or {{$name}} will no
longer be supported.

The actual name of the bind parameter specified in the dataset query definition may contain only:

• upper/lower-case a-z

• digits 0-9

• underscore, colon and hyphen.

All other characters will be ignored.

The values for these parameters may come from the following sources:

User Parameters:

• CGI GET parameters in the URL suffix “/<app>/<ds>?param=value¶m2=another”.

• XML or JSON parameters in the “application/json” or “application/xml” request body.

• RESTful parameters in the URL suffix “/<app>/<ds>/p1/p2”.

• Jarvis-Supplied default user parameters (from “default_parameters” configuration).

Secure Parameters:

• Jarvis-Supplied secure parameters.

December 2013 Working with Jarvis – v5.4.2 40/72

 8.3 Fallback Parameters

Any parameter may be defined as a pipe-separated sequence of parameters. The listed parameters
will be checked in series until one with a defined value is encountered. An empty string value
counts as defined for this purpose.

If no client-supplied value is found then the server-side “default_parameters” configuration is
checked. Finally, a NULL value will be used if no other value is found.

Consider the following query.

<dataset read="*" write="*">
 <select>
SELECT id, class, active FROM boat_class
WHERE ({$1|class_name}::text IS NULL) OR class ~ {$1|class_name}
ORDER BY class
 </select>
</dataset>

The following URLs are identical in this context:

http://localhost/jarvis­agent/demo/boat_filter/a
http://localhost/jarvis­agent/demo/boat_filter?class_name=a

The first is a RESTful parameter. It is the first RESTful parameter and is assigned to parameter “1”.
The second case is a CGI GET supplied user parameter named “class_name”.

Note that when supplying RESTful parameters, it is not possible to supply e.g. parameter “3”
without also defining “2” and “1” as at least empty strings. e.g.

http://localhost/jarvis­agent/demo/boat_filter/a//c

This will supply RESTful parameter “1” → ”a”, “2” → “”, and “3” → “c”. If you wished to supply
the second parameter as NULL, you would need to use the CGI GET syntax with “?” and “&”.

To supply default values for user parameters, use the application configuration file:

<jarvis>
 <app>
 <default_parameters>
 <parameter name="max_rows" value="500"/>
 </default_parameters>

The above configuration would ensure that {$max_rows} always evaluated to a default value of
500 if it was not specified by the client in a request. However, in this example, be aware of the
limitations of SQL placeholders.

 8.4 Other Parameter Notes

Jarvis uses SQL placeholders in all queries for maximum security and efficiency. This means that
each variable is replaced by a prepared statement placeholder '?' in the prepared SQL.

However, there are limits in the power of prepared statement placeholders. E.g. the following is not
valid in this case:

<dataset><select>SELECT * FROM t WHERE c LIKE '%{$filter}%';

December 2013 Working with Jarvis – v5.4.2 41/72

Instead, use Postgres's POSIX RE matching operator '~', or else use:

<dataset><select>SELECT * FROM t WHERE c LIKE '%' || {$filter} || '%';

Other limitations also apply, e.g. the number of lines in SQL Server SELECT TOP my not be a
placeholder parameter. In such cases you may wish to use textual substitution parameters.

Finally, note that by default, the prepared statement compiler will not know the data type of these
substituted variables. In Postgres and other databases you may often need to provide it hints by
using ::<type>, e.g.:

WHERE ({$1|class_name}::text IS NULL) OR class ~ {$1|class_name}

 8.5 Safe Parameters

When supplying user variables via CGI GET and via JSON/XML request body, the parameter
names must be limited to alphanumeric, plus underscore, colon and hyphen. They may contain a
single leading hyphen, but not two. The first non-hyphen character must be [a-zA-Z]. Parameter
names are always case-sensitive.

E.g. the following are invalid as user-supplied parameter in a Jarvis dataset request:

• my(param)
• __my_param
• _1param
• 1

The reason for the limitation on numeric parameters is to avoid conflict with the RESTful
parameters which are named simply “1”, “2”, etc. The reason for the limitation of the leading
double-underscore is because all parameters beginning with double-underscore are secure
parameters, supplied by Jarvis. The default safe parameters substituted into SQL statements are:

Attribute Notes

__username The logged-in username. Never the empty string.

__group_list The comma separated group list. May be empty string.

__group:<g1> Evaluates to “1” if the user is in group <g1>. NULL otherwise.

__group:<g2> Evaluates to “2” if the user is in group <g2>. NULL otherwise.

Table 19: Jarvis Secure Variables

In addition, safe parameters may come from the following other sources:

• Login modules may define additional safe parameters, e.g. {$__user_id}.

• Hooks may define additional safe parameters.

• Default Parameters defined in the application config file may be safe parameters.

Remember. Client-supplied values will never be allowed to modify these safe parameters.

The following pattern is common in SQL for Jarvis datasets. Imagine that table t contains records
owned by the username defined in column “t.owner”. Users in group “admin” may read and write
all records. Other uses may see (read-only) just their own records.

<dataset read="*" write="admin">

December 2013 Working with Jarvis – v5.4.2 42/72

 <select>
SELECT * FROM t WHERE (owner = {$__username}) OR ({$__group:admin} IS NOT NULL)
 </select>
 <update>...</update>
</dataset>

 8.6 Textual Substitution

Whenever possible, you should always use the {$parameter} mechanism to substitute parameters.
This is because that mechanism creates bind parameters which are substituted into the statement at
execution time using ? placeholders. This is guaranteed safe against any form of SQL injection.

However, there are situations where you want to use textual substitution. This is where a parameter
is inserted as text into the statement before the statement is prepared.

The most common reason for this is the ability to use the LIMIT or TOP syntax to restrict the
number of rows which is fetched. Also this is useful to perform SORT requests inside the database
engine itself.

Note that Jarvis provides a built-in post-processing paging and sorting function. There are two
reasons to consider using textual parameter substitution instead of the built-in mechanism.

• To sort by two or more columns. The built-in mechanism supports only one.

• To perform paging within the database query, for performance reasons.

The parameter values available for textual substitution are identical to those available for DBI bind
parameters. However, the need to guard against SQL injection leads to special considerations:

1. By default, the following quoting rules apply:

• If the parameter value is an integer or floating point, it is unquoted. Exponential
numbers will be recognized as numbers.

• Otherwise the parameter is quoted using the DBI database handle $dbh->quote(...)
method appropriate for this database. According to the DBI documentation, this is safe
from SQL injection.

2. Alternatively, if the "!quote" flag is specified, e.g. [$stringvar!quote] then the value is
always quoted with the DBI quote function.

3. Alternatively, if the "!noquote" flag is specified, e.g. [$sortorder!noquote] then the value is
never quoted. Instead, all characters except the following are deleted: 0-9, a-z, A-Z, space,
underscore, hyphen, comma.

4. Alternatively, if the “!raw” flag is specified, e.g. [$__safevar!raw] then the value is textually
substituted into the SQL with no checks or restrictions. Note that the “!raw” can only be
used with “safe” substitutions variables, i.e. those that begin with a double underscore. Safe
variables can never be supplied by the client. The “!raw” flag is restricted to use with
variables that are provided by Jarvis itself, or by server-side hooks and plugins.

Note that in order to specify a client-supplied ORDER BY clause containing more than one column
you will need to use the "!noquote" flag appended to the textual substitution variable name.

Note that as for bind parameters, the name of the textual substitution parameters specified in the
dataset query definition may contain only upper/lower-case a-z, digits 0-9, underscore, colon and
hyphen. All other characters will be ignored.

December 2013 Working with Jarvis – v5.4.2 43/72

 9 SSAS Data Pump Datasets

 9.1 MDX Queries

The entire preceding discussion is accurate for the use of DBI datasets with SQL statements. For
SSAS Data Pump datasets using MDX requests over SOAP, there are some key differences.

The top level attributes are very similar.

Attribute Notes

dbname Specify which database connection should be used for fetching and storing this
dataset. By default, the database named “default” (of type “sdp”) is used for
executing the set.

Note that the type of dataset (“dbi” or “sdp”) is not configurable on a per-dataset
basis. It is determined by the <dataset_dir> element defining the directory
containing the dataset. All datasets in the same directory must execute against
databases of the same type.

read Identical to DBI datasets. Access control identifiers are also identical.

write Identical to DBI datasets. Access control identifiers are also identical.

debug Identical to DBI datasets.

dump Identical to DBI datasets.

Table 20: Attributes of the <dataset> Element

The elements within the <dataset> definition for SSAS Data Pump datasets are as follows:

Element Notes

transform Identical to DBI datasets.

hook Identical to DBI datasets.

mdx MDX to execute when dataset is invoked with the http GET request method.

Table 21: Dataset Sub-Elements

Here is an example SDP dataset which includes a parameter:

<dataset read="**" write="">
 <mdx row_label="GL Code">
SELECT
 [Dw Target Planning].[Category].Children ON ROWS,
 [Time Target Planning].[Month].Members ON COLUMNS
FROM [Cube Name]
WHERE ([Time Target Planning].[Year].[Calendar {$year}])
 </mdx>
</dataset>

December 2013 Working with Jarvis – v5.4.2 44/72

 9.2 Parameter Processing

Parameter sources are identical to the DBI case:

• Client Parameters (REST, Query, POST parameters).

• Server Parameters (Safe parameters, Default parameters).

• Parameter Fallback.

However, since the SOAP mechanism does not support binding, the are some key differences in the
parameter handling:

• All SDP parameter substitution is textual substitution. Always.

• The {$parameter} or [$parameter] forms for MDX query parameters are identical.

• The supported formatting flags are “!string”, “!bracket” and “!raw”.

The “!bracket” flag is intended for use when the MDX parameter is to be expanded within the
context of MDX brackets. If the “!bracket” flag is specified, then the following rules apply:

• Any client-supplied “]” character is replaced with “]]”.

The “!string” flag is intended for use when the MDX parameter is to be expanded within the context
of double quotes:

• Any client-supplied “\” character is replaced with “\\”.

• Any client-supplied double-quote is replaced with backslash double-quote.

The “!raw” flag is permitted only for safe variables, i.e. those whose names begin with underscore,
underscore. Variables with these names can never be provided by the client. They are only
permitted from Jarvis itself, including hooks and plugins. The “!raw” flag means that the variable is
expanded verbatim with no quotes or modification.

If no flag is specified, then the value is unquoted. However, all characters except the following are
deleted: 0-9, a-z, A-Z, space, underscore, hyphen, comma.

December 2013 Working with Jarvis – v5.4.2 45/72

 10 Storing Datasets

 10.1 Modifying Datasets – Single Modification

Now we are ready to modify some data. To do this, we submit an http request with request method
PUT (update), POST (insert), or DELETE (delete). These requests may specify either a single
record, or an array of one or more records.

Note for clients written in Adobe Flex, the framework you use may force you to use only GET or
POST. In this case you may specify an override method (POST, POST, DELETE) to Jarvis by
passing the “_method” parameter as a CGI parameter in the GET or POST request.

In return you will receive a response body containing a matching single record, or a matching array
of one or more records. Let us consider a practical case. Here is a POST request body to insert a
record into the “boat” table in the demo database in the single record (non-array) case.

The Content-Type must be “application/json” or “text/json” for JSON, and “application/xml” or
“text/xml” for XML.

In JSON the request is as follows:

(Request­Line) POST /jarvis­agent/demo/boat HTTP/1.1
Content­Type application/json; charset=UTF­8
{
 "id":0,
 "name":"New Boat Name",
 "class":"Makkleson",
 "registration_num":0,
 "_record_id":1007
}

Corresponding request in XML:

(Request­Line) POST /jarvis­agent/demo/boat HTTP/1.1
Content­Type application/xml; charset=UTF­8
<request>
 <id>0</id>
 <name>New Boat Name</name>
 <class>Makkleson</class>
 <registration_num>0</registration_num>
 <_record_id>12</_record_id>
</request>

The SQL in the <insert> statement is:

 <insert returning="yes">
INSERT INTO boat (name, registration_num, class, owner, description,
change_user, change_date)
VALUES ({$name},
 NULLIF ({$registration_num}, 0),
 NULLIF (BTRIM ({$class}), ''),
 NULLIF (BTRIM ({$owner}), ''),
 NULLIF (BTRIM ({$description}), ''),
 {$__username}, now())
RETURNING {$_record_id}::integer as _record_id, id;

December 2013 Working with Jarvis – v5.4.2 46/72

 </insert>

The user parameters in the JSON record are substituted into the SQL, along with any server side
“default_parameters” values, and any secure parameters such as {$__username}. The statement is
prepared and executed. Because the attribute “returning” is defined as “yes”, then the insert
statement results are fetched and returned in a “returning” parameter of the resulting JSON.

The response is correspondingly a single record, e.g response in JSON:

(Status­Line) HTTP/1.1 200 OK
Content­Type text/plain; charset=ISO­8859­1
{
 "success" : 1,
 "returning" : [
 {
 "_record_id" : "1009",
 "id" : "16"
 }
],
 "modified" : 1
}

Response in XML:

<?xml version="1.0" encoding="iso­8859­1" ?>
<?meta name="GENERATOR" content="XML::Smart/1.6.9 Perl/5.010000 [linux]" ?>
<response success="1" modified="1">
 <returning _record_id="1206" id="639"/>
</response>

In either case, the top-level attributes of the returned object are as follows.

Attribute Notes

success Overall success of the modification request. Success = 1 if the update succeeded or 0
if the update failed.

For array modifications, success = 1 only if all array modifications succeeded.
Otherwise success = 0 indicates one or more rows failed.

modified The total of records modified.

For an array modification, the top level “modified” value is the sum of all of the
“modified” values in all of the “row” attributes.

This attribute is present only if success = 1.

message This is present only if one of the updates failed. For a non-array modification this is
the error message for the failed update.

For an array modification, this is a copy of the error message for the first failed update
in the “row” sub-array. i.e. for a failed array modification, the first error message is
always present twice in the returned result.

December 2013 Working with Jarvis – v5.4.2 47/72

Attribute Notes

returning This is present at the top level only for a non-array modification where the “returning”
clause is specified in the dataset definition, and where the SQL operation did in fact
return one or more rows. The attributes of the returning entries are those returned
columns specified in the SQL definition.

The most common use of the returning clause is returning the auto-generated serial ID
value for an inserted row.

For an array modification, the “returning” elements are found within each of the
“row” update return results.

Note that returning is an array (JSON) or repeatable element (XML), because it is
possible for a single insert/update statement to return more than one row.

Note that under PostgreSQL (and very likely other drivers) an error will occur if you
specify 'returning=”yes”' but then do not add a RETURNING clause to the SQL.

Note that SQLite does not support the RETURNING clause. However, under SQLite
if you specify 'returning=”yes”' then Jarvis will automatically use the
last_insert_rowid() mechanism and will return it as a column named 'id'.

row For an array modification request, the one or more “row” elements in the result
returns the results of each individual modification request in the array.

This attribute is present only if success = 1.

Table 22: Top-Level Attributes of Array Modification Request

 10.2 Modifying Datasets – Array of Modifications

The array update case allows multiple transactions of the same type to be performed at once, for
better throughput. Only transactions of the same type (i.e. either UPDATE or INSERT or DELETE)
may be performed within a single Jarvis http request. If you require a mix of transaction types, you
must send separate requests for each type.

If your database supports the MERGE statement (e.g. recent Oracle versions, or PostgreSQL, or
SQL Server 2008) then you could write your <update> SQL statement in your dataset definition file
to be a combined insert/update statement. Alternatively you could write a stored procedure to do
the same thing.

For SQL Server, see: http://weblogs.sqlteam.com/mladenp/archive/2007/07/30/60273.aspx

Request Format

The format of the array modification request is simply an array of single modifications. Note that
an array with one element (an array modification) will generate a different response from a single
modification (not in an array).

Here is a request updating one toggle to true and another toggle to false. Request in JSON:

[
 {"key":"music","name":"Reprints","toggle":true},
 {"key":"music","name":"Second Hand","toggle":false}
]

December 2013 Working with Jarvis – v5.4.2 48/72

In XML an parallel structure with <request> and <row> tags. Note that the parameters may be
given as attributes OR elements. E.g. the following two XML requests will give identical results.

<request>
 <row key=”music” name=”Reprints” toggle=”true”/>
 <row key=”music” name=”Second Hand” toggle=”false”/>
</request>
...or...
<request>
 <row><key>music</key><name>Reprints</name><toggle>true</toggle></row>
 <row><key>music</key><name>Second Hand</name><toggle>false</toggle></row>
</request>

The response in JSON format might be:

{
 "success" : 1,
 "row" : [
 {
 "success" : 1,
 "modified" : 1
 },
 {
 "success" : 1,
 "modified" : 1
 }
],
 "modified" : 2
}

Or in XML the response might be:

<?xml version="1.0" encoding="iso­8859­1" ?>
<?meta name="GENERATOR" content="XML::Smart/1.6.9 Perl/5.010000 [linux]" ?>
<response success="1" modified="2">
 <results>
 <row modified="1" success="1"/>
 <row modified="1" success="1"/>
 </results>
</response>

Note that the preceding example does not show the optional returning clause The attributes of each
returned “row” entry are as follows.

Attribute Notes

success Success result of this individual modification. Value 0 (success) or 1 (failed).

modified Number of rows affected by this individual modification.

message If not success, this is the error message for this individual modification.

returning Returned information. Only present if “returning” = “yes” was specified for this
modification type in the dataset definition, and if the modification actually returned
one or more rows. Elements of the returning clause are as specified in the SQL.

Table 23: Attributes of the “row” Sub-Elements in Array Modification Response

December 2013 Working with Jarvis – v5.4.2 49/72

 10.3 Modifying Datasets – Array of Mixed Modifications

In the previous section describing array modifications, all of the changes in the transaction needed
to be of a single type – e.g. all “update”, all “insert”, all “delete”, etc. This is according to the
RESTful standard, which requires the “method” to be specified at the top level of the request.

However, in practical terms, it is often desirable to perform a single transaction which consists of a
mixture of insert/update/delete on the same dataset. Jarvis does support that, with the “MIXED”
method request.

Simply specify “MIXED” as the request method. Then, for each row, specify the “_ttype”
parameter as one of the per-row attributes or elements.. E.g.

<request>
 <row><_ttype=”update” key=”music” name=”Reprints” toggle=”true”/>
 <row><_ttype=”insert” key=”music” name=”Second Hand” toggle=”false”/>
 <row><_ttype=”delete” key=”music” name=”Underfunded”/>
</request>

All of these modifications will be performed within a single begin/end transaction, including (if
defined) any before and/or after statements as described subsequently.

 10.4 Before & After Statements

The “before” and “after” elements in a dataset allow you to specify optional SQL to be executed at
the beginning and end of a modification transaction (either array or single). This allows you to
perform the equivalent of “Pre-Commit” triggers in databases which do not otherwise support them.

When performing array modifications, all changes are performed within a bounding begin/end
transaction. The actual sequence for single http/s modification request is as follows.

• Begin transaction.
• Perform “before” SQL (if configured for this dataset).
• Perform the one single or one-or-more array modifications in the request body.
• Perform “after” SQL (if configured for this dataset).
• Commit transaction.

An error at any stage will cause the entire transaction to be rolled back.

Note that any “before” or “after” statements may contain references to Secure Dataset Parameters
(such as “{__username}” and “{__group_list}”. They may also access RESTful arguments as
specified in the URL e.g. “{1}” or “{2}”.

However, “before” and “after” statements naturally do not have access to any of the per-row
parameters in the request body. Note also that the “before” and “after” statements are not invoked
for “select” operations, only for modification operations.

 10.5 Transaction and Rollback

It is important to note:

• For “fetch” statements in a dataset (i.e. the <select> attributes), no explicit transaction is
performed.

• For “store” statements in a dataset (i.e. <insert>/<update>/<delete> attributes), an outer
transaction is automatically applied.

December 2013 Working with Jarvis – v5.4.2 50/72

Note that this is not based on the textual content of the SQL, but on which named attribute tag is
being executed.

This means that if your <select> attribute SQL performs multiple data modifications as a
side-effect, then a failure in a later step will not rollback any earlier changes. If you require a
transaction around the modifications, then either define it as an <insert>/<update>/<delete> and use
the appropriate REST action to invoke it, or else implement your own transaction within your SQL
body.

Here is an example of a case where <insert> element SQL was used with an array of two new rows
being requested. In this case, one failed. All changes are rolled back:

{
 "success" : 0,
 "message" : "ERROR: duplicate key violates unique constraint \"boat_pkey\""
}

Note here:

• Even though the first modification succeeded, it was rolled back.
• The first failing error message is shown.
• The “row” elements and “modified” keys are not present.

Note that SSAS Data Pump datasets support only the “fetch” mechanism. There is no writeback.

December 2013 Working with Jarvis – v5.4.2 51/72

 11 Dataset Transformations

 11.1 Introduction

Refer back to the original “boat_class.xml” example given earlier in this document. It used Jarvis
“transform” configurations to ensure that empty strings were always written as NULL to the
database, and that NULL values in the database were always given as empty string to the client.

This allows the client to be confident that empty values were always represented in a consistent
manner. The alternative is to explicitly code this into the SQL statements in the dataset, e.g. with
NULLIF, COALESCE, BTRIM, etc.

The <transform> element allows you configure transforms for “store” and “fetch”. The attribute
value is a comma-separated list of transformations to apply when fetching (select) and when storing
(insert, update, delete).

The following are currently supported and are applied in this order:

Transformation Notes

trim Leading and trailing spaces will be removed.

null Empty strings will be converted to NULL. Occurs after trimming.

notnull NULL values will be converted to empty string.

word2html Convert MS Word unicode and 8-bit character to HTML to ensure no binary
content in the string. Will brute-force convert characters we don't recognize.

Table 24: Transformation keywords for “store” and “fetch”

December 2013 Working with Jarvis – v5.4.2 52/72

 12 Fetching Multiple Datasets in One Request

 12.1 Introduction

As of Jarvis 4.0, the facility exists to request the results of more than one dataset in a single HTTP
request. This is a standard technique for improving the response time of rich Internet applications.

No additional server-side configuration is required to access this feature. Simply perform a normal
Jarvis “fetch” request, but specify a comma-separated list of dataset names in your request.

Note that this feature:

• Does not apply to Exec or Plugin or Special datasets.

• Does apply to both DBI and SDP datasets.

• Is for “fetch” (select or mdx) requests only.

• Is supported for format = “json”, “json.array”, “xml”, “xml.array”.

• Is not supported for format = “csv” or “xlsx”.

• You may use a “result_fetch” hook to enhance/modify the returned content of these requests.

Do not use spaces before or after the commas.

 12.2 JSON Multi-Dataset Result Structure

The format for the returned result of a multi-dataset fetch request is necessarily more complex than
for a single dataset request. Each dataset is nested inside a structure to separate the data values
from other dataset results.

{
 "dataset" : {
 "sport_list" : {
 "data" : [
 {
 "name" : "Golf",
 "description" : "An outdoor sport."
 },
 {
 "name" : "Tennis",
 "description" : "Another outdoor sport."
 },
],
 "fetched" : 2,
 "returned" : 2
 },
 "player_details" : {
 "data" : [
 {
 "name" : "Aaron Hoffman",
 "sport" : "Golf",
 "rank": 323
 },
 {
 "name" : "William Uchtman",

December 2013 Working with Jarvis – v5.4.2 53/72

 "sport" : "Tennis",
 "rank": 14002
 }
],
 "fetched" : 2,
 "returned" : 2
 }
 },
 "logged_in" : 1,
 "error_string" : "",
 "username" : "Guest",
 "group_list" : "admin"
}

When using the “json.array” format, the nested object for each dataset is modified accordingly.

 12.3 XML Multi-Dataset Result Structure

Equally, the XML results structure for a multi-dataset response encapsulates each dataset response
in a substructure as the following example indicates:

<?xml version="1.0" encoding="iso­8859­1" ?>
<?meta name="GENERATOR" content="XML::Smart/1.6.9 Perl/5.010001 [linux]" ?>
<response logged_in="1" username="Guest" error_string="" group_list="admin">
 <dataset fetched="2" name="sport_list" returned="2">
 <data>
 <row description="An outdoor sport." name="Golf"/>
 <row description="Another outdoor sport." name="Tennis"/>
 </data>
 </dataset>
 <dataset fetched="2" name="player_details" returned="2">
 <data>
 <row name="Aaron Hoffman" sport="Golf" rank="323"/>
 <row name="William Uchtman" sport="Tennis" rank="14002"/>
 </data>
 </dataset>
</response>

When using the “xml.array” format, the nested object for each dataset is modified accordingly.

December 2013 Working with Jarvis – v5.4.2 54/72

 13 Exec Datasets

 13.1 Introduction

The “exec” configuration entry allows you to define commands which should be executed on the
server side, with the output results returned to the client via the http response. The return is
synchronous, i.e. the client is expected to wait for the response. Common exec commands may be
e.g. to run a reporting program such as Jasper Reports.

None or more “exec” configurations may be defined. The dataset name must not conflict with any
other “exec” dataset, any “plugin” dataset, any regular dataset, or any special dataset.

When invoking an “exec”, use the GET or POST methods. Specify the “exec” dataset name in the
URL, e.g. if the “dataset” attribute of the “exec” element is “echo” then access the dataset with the
following URL.

http://localhost/jarvis­agent/demo/echo/

 13.2 Configuration

The configuration for an “exec” element is as follows:

Attribute Default Notes

dataset <none> Dataset name which is to be interpreted as an “exec” rather than a
regular dataset. Mandatory parameter. The actual dataset given
in the Jarvis request must match this, or a sub-dataset of this.

E.g. if the exec configuration specifies “jasper” as its dataset
name, then the dataset name supplied to Jarvis by the client may
be “jasper” or “jasper.ReportName”.

access <none> This lists the group names that the logged-in user must belong to
one of before they can access this “exec”. Specify a group name,
comma-separated list, “*” or “**”. See the documentation for
“read” and “write” groups on regular datasets for further details.

command <none> This is the command line to be executed. Mandatory parameter.

add_headers no If yes, Jarvis will add Cookie, Content-Type and
Content-Disposition headers to the response. Otherwise the exec
command is entirely responsible for printing ALL headers.

Note that if add_headers is no, be sure to add the header
'Cache-Control' and set the value to 'no-cache' yourself in the
outgoing response if you want to avoid responses being cached
by IE.

mime_type <none> Only used if add_headers is “yes”. Allow plugin to override the
default MIME type by specifying a value to use. This takes
precedence over any mime type which may be derived from a
filename.

December 2013 Working with Jarvis – v5.4.2 55/72

filename_parameter 'filename' Only used if add_headers is “yes”. We expect a CGI parameter of
this name to be present and to contain the returned filename. If
you wish to use “filename” as a normal parameter to your plugin,
you will need to change this configuration.

default_filename <none> Only used if add_headers is “yes”. Default filename to use if no
filename_parameter is defined or if the CGI parameter named by
filename_parameter is not present.

use_tmpfile depends Whether or not the command should write its output to a
temporary file or not. The default is no under non-MS Windows
operating systems, and yes for MS Windows. This is required
under MS Windows with Apache otherwise output will be
corrupted.

If this is set to “yes”, or the system is running on MS Windows,
the parameter “__use_tmpfile” is passed through on the command
line and references the filename of the file into which the
command's output should be placed.

See following notes on output methods.

tmp_directory depends This allows you to overwrite the default TMP directory to be used
when exec output is spooled to file instead of printed directly to
the http client via standard output.

Note that specifying “tmp_directory” will force the use of
temporary files, regardless of the value of the “use_tmpfile”
parameter.

tmp_http_path <none> Setting the parameter tells Jarvis to redirect the client to the
output temporary file via this URI which must be configured in
the web server to point to the temporary directory.

E.g. if “tmp_directory” is “/tmp” and “tmp_http_path” is
“/tmp-reports” then the webserver must contain an alias mapping
“http://host/tmp-reports/” to “/tmp”. Use of a dedicated report
output directory is recommended for security reasons.

Note that specifying “tmp_http_path” will force the use of
temporary files, regardless of the value of the “use_tmpfile”
parameter.

Note that specifying “tmp_http_path” will mean that
“add_headers” is ignored, as MIME headers are not relevant to a
redirection response.

December 2013 Working with Jarvis – v5.4.2 56/72

cleanup_after 0 If set to a non-zero value, this parameter will enable cleanup of
files in the temporary directory after the specified number of
minutes. Set to zero (default) means “never cleanup”.

Jarvis will only remove files which are owned by the user running
the server script (e.g. www-data). Even so, care should be taken
when using a shared temporary directory for exec output.

debug <n/a> Enable “debug” output to standard error for this plugin only. This
parameter can not be used to disable global debugging.

dump <n/a> Enable “dump” output to standard error for this plugin only. This
parameter can not be used to disable global dump output.

Table 25: Exec Configuration Attributes

December 2013 Working with Jarvis – v5.4.2 57/72

 13.3 Output Return Mechanism

Given the above configuration, there are three different ways in which Jarvis might return the
output from an exec dataset. These are as follows.

Mechanism Notes

Redirection This mechanism is used if and only if “tmp_http_path” is specified.

Jarvis will choose a value for “__tmpfile” which is based on the “reportfile”
name requested by the client. A random component will be added to the name
and it is guaranteed not to exist at the time of exec.

The “__tmpfile” parameter is passed to the executable command line. The
executable command line write its output in that file.

When the execution is complete, Jarvis will send back a “302 Found” response
to the client to redirect it to the new output using the specified
“tmp_http_path”.

This is the recommended approach for cross-platform systems and/or large
output and/or binary data.

Streaming If “use_tmpfile” and/or “tmp_directory” is specified without specifying any
value for “tmp_http_path” then streaming will be used.

Jarvis will choose a value for “__tmpfile” which is based on the “reportfile”
name requested by the client. A random component will be added to the name
and it is guaranteed not to exist at the time of exec.

The “__tmpfile” parameter is passed to the executable command line. The
executable command line write its output in that file.

When the execution is complete, Jarvis will loop through this file and stream
the contents back to the client. If configured, Jarvis will add headers derived
from the filename parameter.

This is method appears to work fine under Windows under HTTP.

Problems have been encountered with this method under Linux.

Problems have been encountered with this method under Windows with
Apache/HTTPS.

Direct/STDOUT If no tmpfile parameters are specified, then Jarvis will copy the stdout of the
executed program and will echo it via stdout through the server and back to the
client.

Problems have been encountered with this method under Windows with binary
data.

Table 26: Exec Return Mechanisms

December 2013 Working with Jarvis – v5.4.2 58/72

 13.4 A Simple Example

A sample “exec” is defined in the demo application, as follows:

<jarvis>
 <app>
 <exec use_tmpfile=”no” dataset="echo" access="*" command="echo"
 add_headers="yes" filename_parameter="filename"/>

This uses the Unix “echo” program to simply echo its parameters back to standard output. We will
use this to demonstrate the parameters available to “exec” datasets.

 13.5 Environment Variables

The environment variables to the exec are the same as to the Jarvis script itself. Refer to the Apache
documentation for details.

In addition, if the “debug” attribute is “yes” for this application's main configuration, then the
environment variable “DEBUG” will be set to “DEBUG=1” when calling the exec process.

 13.6 Command Line Parameters

The exec parameters to the command line are essentially those passed into SQL dataset statements.
They will include:

• Any GET or POST parameters supplied in the request, subject to the standard permitted
syntax as described in the regular dataset section. i.e. user-supplied parameters may not
start with a double-underscore, may not include special characters, etc.

• Any RESTful parameters specified in the URI. These are passed as “p1”, “p2”, etc.

• The parameter __dataset is given as the client-supplied dataset given to Jarvis which
invoked this exec request.

• The parameter __tmpfile is given if use_tmpfile is configured for this exec.

• The Jarvis secure parameters beginning with double-underscore. These include
__username, __group_list, etc.

• Any default parameters configured in the <default_parameters> section.

E.g with the supplied demo.xml file, consider the following request.

http://localhost/jarvis­agent/demo/echo.test/v1//v2?he=th'is&she=that

The command line executed will be:

echo __group:admin='1' __dataset='echo.test' __group_list='admin'
__username='admin' he='th'\''is' max_rows='500' p1='v1' p2='' p3='v2'
she='that'

The parameters are quoted to make them safe for the command shell.

 13.7 Output & Headers

The exec process should write its output to standard output. If “add_headers” is “no” then the

December 2013 Working with Jarvis – v5.4.2 59/72

program is also responsible for writing HTTP headers and a blank line before beginning output.

If “add_headers” is “yes” then Jarvis will add the content type headers. In addition, Jarvis can add
a Content-Disposition header if you supply the “default_filename” and “filename_parameter”
parameters.

The “filename_parameter” configuration parameter specifies the name of the client-given CGI
parameter to evaluate to determine the returned filename. If not present, the value of the
“default_filename” parameter will be used. This will be used as the filename in the
“Content-Disposition” header when returning the output to the client. The filename suffix will be
examined to determine the appropriate “Content-Type” header value to use.

Exec output may include binary data. For a practical example, see the “png” exec in demo.xml.

December 2013 Working with Jarvis – v5.4.2 60/72

 14 Plugin Datasets

 14.1 Introduction

The “plugin” configuration entry allows you to define a dataset which is fetched by executing a Perl
module on the server side. The Perl module will have access to the Jarvis database connection, and
will have the user authentication tasks already performed. This makes is simple to add new
server-side functionality which cannot be easily represented in a SQL statement.

Jarvis plugin datasets should be accessed by the GET or POST methods. None or more “plugin”
elements may be configured.

 14.2 Configuration

The configuration attributes for a “plugin” element are as follows.

Attribute Default Notes

dataset <none> Dataset name which is to be interpreted as a “plugin” rather than a
regular dataset. Mandatory parameter.

access <none> This lists the group names that the logged-in user must belong to
one of before they can access this “exec”. Specify a group name,
comma-separated list, “*” or “**”. See the documentation for
“read” and “write” groups on regular datasets for further details.

lib <none> This is an additional directory to be optionally added to the @INC
path when loading this module.

If the necessary path for the module is defined using the global
<default_lib> element in the configuration, then this attribute is
not necessary.

module <none> This is the Perl module name with subdirectories separated by '::'
and ending in '.pm'.

add_headers no If yes, Jarvis will add Cookie, Content-Type and
Content-Disposition headers to the response. Otherwise the
plugin module is entirely responsible for printing ALL headers.

Note that if add_headers is no, be sure to add the header
'Cache-Control' and set the value to 'no-cache' yourself in the
outgoing response if you want to avoid responses being cached
by IE.

filename_parameter <none> Only used if add_headers is “yes”. We expect a CGI parameter of
this name to be present and to contain the returned filename.

default_filename <none> Only used if add_headers is “yes”. Default filename to use if no
filename_parameter is defined or if the CGI parameter named by
filename_parameter is not present.

December 2013 Working with Jarvis – v5.4.2 61/72

Attribute Default Notes

parameter <n/a> One or more sub-elements defining static parameters to be passed
to the plugin. Each “parameter” element has a “name” and
“value” attribute.

This allows site-specific plugin configuration to be stored in a
common, accessible location. This also allows one Perl module
to be used by different “plugin” instances within the same
application, each with their own “dataset” name and each with
slightly different behavior.

debug <n/a> Enable “debug” output to standard error for this plugin only. This
parameter can not be used to disable global debugging.

dump <n/a> Enable “dump” output to standard error for this plugin only. This
parameter can not be used to disable global dump output.

Table 27: Plugin Configuration Attributes

 14.3 Example Plugin

A sample plugin is included with the demo module. By default it is configured as follows:

<jarvis>
 <app>
 <plugin dataset="plug" access="*" lib="/usr/share/jarvis/demo"
 module="plugin::Demo" add_headers="yes"
 filename_parameter="filename">

 <parameter name="smtp_server" value="192.168.70.100"/>
 <parameter name="category" value="kiwisaver"/>
 </plugin>

The source of the sample “Demo.pm” file is as follows:

use strict;
use warnings;

sub plugin::Demo::do {
 my ($jconfig, $restArgs, %args) = @_;

 my $output = "";

 &Jarvis::Error::debug ($jconfig, "Running the Demo plugin.");

 # This demonstrates that the plugin can access Jarvis::Config info.
 $output .= "APP: " . $jconfig­>{'app_name'} . "\n";
 $output .= "Username: " . $jconfig­>{'username'} . "\n";
 $output .= "CGI myval: " . ($jconfig­>{'cgi'}­>param('myval') || '') .
"\n";

 # This demonstrates XML­configured parameters to the plugin.
 $output .= "CAT: " . $args{'category'} . "\n";

 # This demonstrates accessing RESTful arguments that are

December 2013 Working with Jarvis – v5.4.2 62/72

 # from the URL after the dataset name
 my $counter = 0;
 map {
 $output .= "RESTful argument $counter: " . $restArgs­>[0] . "\n";
 } @{$restArgs};

 my $dbh = &Jarvis::DB::Handle ($jconfig);
 $output .= "Boats: " . $dbh­>do("SELECT COUNT(*) FROM boat");

 return $output;
}

1;

This demonstrates:

• Using the Jarvis debug methods.
• Accessing the Jarvis Config “jconfig” object.
• Accessing the static configured plugin parameters.
• Accessing the Jarvis-supplied database connection.

Accessing this plugin via the following URL:

http://localhost/jarvis­agent/demo/Plug/rest1/rest2/?myval=test

The output is:

APP: demo
Username: admin
CGI myval: test
CAT: kiwisaver
RESTful argument 0: rest1
RESTful argument 1: rest2
Boats: 1

 14.4 Output & Headers

Jarvis offers support for “add_headers”, “filename_parameter” and “default_parameter” handling
for “plugin” datasets identical to “exec” datasets.

 14.5 Exception Handling

To handle an exception in your plugin, simply call “die”. You may optionally set an explicit HTTP
status to return. Otherwise Jarvis will return a “500 Internal Server Error”.

$jconfig­>{'status'} = '404 Not Found';
die "Plugin cannot continue, moon not found in expected phase.";

December 2013 Working with Jarvis – v5.4.2 63/72

 15 Hook Modules

 15.1 Introduction

The “hook” configuration entry allows you to define an application-custom module containing
methods which will be invoked at key points during the processing.

Hook __statu
s

__h
ab

itat

__login

__logou
t

E
xec

P
lu

gin

D
B

I F
etch

SD
P

 F
etch

D
B

I Store

start YES YES YES YES YES YES YES YES YES

after_login YES YES YES YES YES YES YES YES YES

pre_connect YES YES YES YES YES YES YES YES YES

before_all YES

before_one YES

after_one YES

after_all YES

return_status YES

dataset_fetched YES YES

return_fetch YES YES

return_store YES

finish YES YES YES YES YES YES YES YES YES

Note that the “after_login” hook is only actually called when:

• The client did not provide a valid session ID.

• The client did provide enough information to be logged-in during this request.

Hooks can be defined globally and/or for individual datasets. All global hooks are invoked before
all dataset-specific hooks.

 15.2 Hook Points

There are eleven supported hook points, which fit into the Jarvis processing sequence as follows:

Hook Notes

start The start hook is called when the hook module is first loaded. No dataset
analysis has been performed yet. No database transaction is open.

For global hooks, the start hook is invoked before any login check occurs.

For per-dataset hooks, the start hook is invoked when the dataset
configuration is loaded, before any dataset security checking occurs.

Args are:

December 2013 Working with Jarvis – v5.4.2 64/72

• $jconfig,
• $hook_parameters_href

The $jconfig is the standard Jarvis configuration object. The hook may
modify this object.

The $hook_parameters_href is a hash containing the name and value from
any <parameter> tags configured for this hook in the application XML
file.

after_login This hook is called only when Jarvis successfully creates a new, logged-in
session. It allows the hook module to perform additional login processing,
e.g. recording first/last login times.

Also, the hook module may create additional "safe" variables which will
be stored in the session and available to all subsequent dataset interactions
on this session.

Note that this hook is called only for global hooks. It is never triggered
for per-dataset hooks.

Args are:

• $jconfig,
• $hook_parameters_href
• $additional_safe_href

The $additional_safe_href is a hash of "safe" parameters which the hook
module may extend. All "safe" parameter names must begin with a "__"
double underscore prefix.

pre_connect This hook is called whenever a new database connection is made. It
allows the hook module to potentially modify the database connection
string.

This is useful where your application is distributed across a dynamic
number of databases, e.g. where you support multiple clients each with a
private database instance.

Args are:

• $jconfig,
• $hook_parameters_href
• dbname
• dbtype
• dbconnect_ref
• $dbusername_ref
• $dbpassword_ref
• $parameters_href

The $dbname is the identifier for the database within the Jarvis
configuration file. E.g. “default”.

The $dbtype is the key “dbi” or “sdp” used within the Jarvis configuration
file to distinguish between DBI and other database mechanisms.

December 2013 Working with Jarvis – v5.4.2 65/72

The $dbconnect_ref is the DBI or SDP connection string that has been
determined. This may be modified by the hook.

The $dbusername_ref is the configured username from the configuration
file. The hook may modify this.

The $dbpassword_ref is the configured password from the configuration
file. The hook may modify this.

The $parameters_href is the hash of additional database connection
parameters for this database type/name as read from the Jarvis
configuration file. The hook may modify this.

Note that currently there must be an existing <database> entry in the Jarvis
configuration file before this hook is invoked. If the configuration file
does not contain an entry for the requested database type/dbname then an
error will be raised and the hook is not invoked.

before_all
(insert/update/delete)

This hook is called after Jarvis has loaded the dataset configuration and
processed all REST args. It is called after the transaction begins.

It is called before invoking the <before> SQL statement in the dataset
XML file. It is called even if there is no <before> SQL statement.

Args are:

• $jconfig
• $hook_parameters_href
• $dsxml
• $rest_args_href
• $fields_aref

The $dsxml is an XML::Smart object for the dataset's XML config.

The $rest_args_href is the hash of safe variables and REST args to be
given to the <before> statement. The hook code may change this hash.
Changes will affect only the <before> SQL.

The $fields_aref is the array of user change objects submitted for this
request.

before_one
(insert/update/delete)

This hook is called after Jarvis has assembled all parameters in order to
execute a single insert/update/delete statement.

It is invoked before the actual execution of the row modification SQL.

Args are:

• $jconfig
• $hook_parameters_href
• $dsxml
• $sql_params_href

The $sql_params_href is the hash of safe variables, REST args and general
SQL args to be given to the <insert>, <update> or <delete> statement.
The hook code may change this hash. Changes will affect only the single
SQL statement.

December 2013 Working with Jarvis – v5.4.2 66/72

after_one
(insert/update/delete)

This hook is called after Jarvis has executed a single insert/update/delete
statement. It is called after any returning row result has been fetched.

Args are:

• $jconfig
• $hook_parameters_href
• $dsxml
• $sql_params_href
• $row_result_href

The $sql_params_href is the hash of variables previously bound to the
single SQL row update. Changing this hash will have no effect.

The $row_result_href is the contents of any returning row. The hook code
may change this hash.

after_all
(insert/update/delete)

This hook is called after invoking the <after> SQL statement in the dataset
XML file. It is called even if there is no <after> SQL statement. The
transaction is not yet committed.

Args are:

• $jconfig
• $hook_parameters_href
• $dsxml
• $rest_args_href
• $fields_aref
• $results_aref

The $results_aref is a reference to the @results array of return objects that
will be encoded into JSON or XML. Changes to this objects in this array
will be represented in the data returned to the client.

return_status This hook is called only for "__status" requests. It is called just before the
status result is encoded to JSON/XML. The hook may do one or more of
the following:

1. Add some extra root level parameters (by modifying $extra_href)

2. Perform a custom encoding into text (by setting $return_text)

Args are:

• $jconfig
• $hook_parameters_href
• $extra_href
• $return_text_ref

The $extra_href is a reference to a hash of name/value mappings all of
which will be added as root level parameters to the JSON object or XML
response object that is encoded and returned to the client.

The $return_text_ref is a reference that the plugin may set to a non-empty
text string if it wishes to override the default JSON/XML encoding that
would otherwise be performed by Jarvis. In this case the hook is entirely

December 2013 Working with Jarvis – v5.4.2 67/72

responsible for encoding the entire JSON/XML result.

dataset_fetched This hook is called only for “fetch” (i.e. data select) requests. It is called
after the SQL select is performed. If the request is for multiple
comma-separated datasets then this hook is called once for each dataset in
the list.

The hook may do one or more of the following:
1. Add some extra scalar parameters (by modifying $extra_href)
2. Modify the returned content (by modifying $rows_aref)

Args are:

• $jconfig
• $hook_parameters_href
• $dsxml
• $sql_params_href
• $rows_aref
• $column_names_aref
• $extra_href

The $rows_aref is a reference to the array of objects fetched as a result of
the executed SQL. This is the data that will be encoded into JSON or
XML. Changes to this objects in this array will be represented in the data
returned to the client.

The $column_names_aref is a reference to the array of all the column
names. This is used when constructing responses in the following
formats: “json.array”, “xml.array”, “csv” and “xlsx”.

Any scalar parameters set by modifying $extra_href will be added to the
dataset return structure.

return_fetch This hook is called only for "fetch" (I.e. data select) requests. It is called
at the end of the fetch sequence, just before the returned dataset results are
encoded to JSON/XML. The hook may do one or more of the following:

1. Add some extra root level parameters (by modifying $extra_href)

2. Alter the the returned data structure (by modifying $return_object)

3. Perform a custom encoding into text (by setting $return_text_ref)

Args are:

• $jconfig
• $hook_parameters_href
• $sql_params_href
• $return_object
• $extra_href
• $return_text_ref

The $return_object is a Perl object containing Hash and Array references.
The exact structure of this object is different for JSON and XML formats,
and also differs according to if the request was for a single dataset or for

December 2013 Working with Jarvis – v5.4.2 68/72

multiple comma-separated datasets.

return_store This hook is called only for "store" (I.e. data insert/update/delete) requests.
It is called at the end of the stored sequence, just before the results of the
store operation(s) are encoded to JSON/XML/CSV/XLSX. The hook may
do one or more of the following:

1. Add some extra root level parameters (by modifying $extra_href)

2. Modify the returned content (by modifying $results_aref)

3. Perform a custom encoding into text (by setting $return_text)

Args are:

• $jconfig
• $hook_parameters_href
• $dsxml
• $rest_args_href
• $fields_aref
• $results_aref
• $extra_href
• $return_text_ref

finish The finish hook is called after the special dataset, fetch or
insert/update/delete processing is completed and the response has been
sent to the client.

Any database transaction associated with the dataset is now finished. The
hook module should use this hook only for cleanup and/or auditing.

Args are:

• $jconfig
• $hook_parameters_href
• $return_text_ref

Table 28: List of Hook Points

Note that:

• You may implement none, some, or all hook methods.

• All implemented hook methods must all return “1”.

• There is no way for a hook to stop processing, other than to call “die”.

• If an SQL error occurs during dataset updates, any following before_one, after_one and
after_all hook calls will be skipped. Only the finish hook call will be invoked.

• If multiple <hook> sections are defined in the application XML file, then at the hook point,
the corresponding method from all defined hook classes will be called sequentially in the
order that they are listed.

 15.3 Configuration

The configuration for a “hook” element is as follows:

December 2013 Working with Jarvis – v5.4.2 69/72

Attribute Default Notes

lib <none> This is an additional directory to be optionally added to the @INC
path when loading this module.

If the necessary path for the module is defined using the global
<default_lib> element in the configuration, then this attribute is
not necessary.

module <none> This is the Perl module name with subdirectories separated by '::'
and ending in '.pm'.

parameter <n/a> One or more sub-elements defining static parameters to be passed
to the plugin. Each “parameter” element has a “name” and
“value” attribute.

This allows site-specific plugin configuration to be stored in a
common, accessible location. This also allows one Perl module
to be used by different “plugin” instances within the same
application, each with their own “dataset” name and each with
slightly different behavior.

Table 29: Hook Configuration Attributes

 15.4 Sample Hook Template

The following empty module should help you get your first Hook module under way. You may
safely delete any hook methods you do not wish to implement.

use strict;
use warnings;

"start" hook.
sub hook::ExampleHook::start {
 my ($jconfig, $params_href) = @_;
 return 1;
}

"after_login" hook.
sub hook::ExampleHook::start {
 my ($jconfig, $params_href, $additional_safe_href) = @_;
 return 1;
}

"before_all" hook.
sub hook::ExampleHook::before_all {
 my ($jconfig, $params_href, $dsxml, $rest_args_href, $fields_aref) = @_;
 return 1;
}

"before_one" hook.
sub hook::ExampleHook::before_one {
 my ($jconfig, $params_href, $dsxml, $sql_params_href) = @_;
 return 1;
}

December 2013 Working with Jarvis – v5.4.2 70/72

"after_one" hook.
sub hook::ExampleHook::after_one {
 my ($jconfig, $params_href, $dsxml, $sql_params_href,

$row_result_href) = @_;
 return 1;
}

"after_all" hook.
sub hook::ExampleHook::after_all {
 my ($jconfig, $params_href, $dsxml, $rest_args_href, $fields_aref,

$results_aref) = @_;
 return 1;
}

"return_status" hook.
sub hook::ExampleHook::return_status {
 my ($jconfig, $params_href, $extra_href, $return_text_aref) = @_;
 return 1;
}

"dataset_fetched" hook.
sub hook::ExampleHook::dataset_fetched {
 my ($jconfig, $params_href, $dsxml, $sql_params_href, $rows_aref,

$column_names_aref, $extra_href) = @_;
 return 1;
}

"return_fetch" hook.
sub hook::ExampleHook::return_fetch {
 my ($jconfig, $params_href, $sql_params_href, $return_object, $extra_href,

$return_text_aref) = @_;
 return 1;
}

"return_store" hook.
sub hook::ExampleHook::return_store {
 my ($jconfig, $params_href, $dsxml, $rest_args_href, $fields_aref,

$results_aref, $extra_href, $return_text_aref) = @_;
 return 1;
}

"finish" hook.
sub hook::ExampleHook::finish {
 my ($jconfig, $params_href, $return_text_ref) = @_;
 return 1;
}

1;

December 2013 Working with Jarvis – v5.4.2 71/72

 16 Performance Notes

 16.1 How Fast is Jarvis?

The following performance results were measured under the following conditions:

• Dual-Core Intel @ 2.5 GHz, 4G of RAM. (CPU Blowfish rating 7.09).

• Kubuntu 09.10 (Karmic Koala).

• Apache 2 webserver using HTTP (not SSL).

• Apache jmeter client with five simultaneous threads.

• PostgreSQL database.

• Dataset content “<select>SELECT 1 AS result</select>”.

Result summary is:

Setup Notes Latency Throughput

CGI 523 ms ~ 9 request/sec

mod_perl 54 ms ~ 90 request/sec

mod_perl + Apache::DBI (JSON) 41 ms ~ 120 request/sec

mod_perl + Apache::DBI (XML) 41 ms ~ 120 request/sec

mod_perl + Apache::DBI + Tracking 73 ms ~ 70 request/sec

This shows that the Jarvis framework is easily capable of supporting well over 100 requests per
second on commodity hardware. This is suitable for many mid-range RIA applications.

Naturally, any heavy database processing will reduce this response rate accordingly.

December 2013 Working with Jarvis – v5.4.2 72/72

	1 Introduction
	2 Licence
	2.1 GNU Lesser General Public License
	2.2 Clarification of Intentions
	2.3 Jarvis Tracker Icons

	3 Installation
	3.1 Separate Documentation

	4 Application Configuration File
	4.1 Introduction
	4.2 List of Parameters
	4.3 Configuration Parameter Details
	4.3.1 Configuration: format
	4.3.2 Configuration: debug
	4.3.3 Configuration: dump
	4.3.4 Configuration: log_format
	4.3.5 Configuration: page_limit_param, page_start_param
	4.3.6 Configuration: sort_field_param, sort_dir_param
	4.3.7 Configuration: dataset_dir
	4.3.8 Configuration: default_libs
	4.3.9 Configuration: method_param
	4.3.10 Configuration: login
	4.3.11 Configuration: database
	4.3.12 Configuration: sessiondb
	4.3.13 SID source: URLs vs Cookies
	4.3.14 Configuration: exec & plugin & hook
	4.3.15 Configuration: habitat

	5 Login Module Configuration
	5.1 Standard Modules
	5.2 Active Directory Login
	5.3 Basic Auth Login
	5.4 Database Login
	5.5 Adempiere Login
	5.6 Drupal6 Login
	5.7 None Login
	5.8 Single Login

	6 Special Datasets & Jarvis Login
	6.1 Jarvis URLs
	6.2 The __status Dataset
	6.3 The __habitat Dataset
	6.3.1 JSON Habitat
	6.3.2 XML Habitat

	6.4 The __logout Dataset
	6.5 Logging-In to Jarvis
	6.6 Jarvis Error Responses

	7 Fetch Results
	7.1 Format = json
	7.2 Format = json.array
	7.3 Format = xml
	7.4 Format = xml.array
	7.5 Format = csv
	7.6 Format = xlsx

	8 Datasets and Parameters
	8.1 Dataset Definition
	8.2 Dataset Bind Parameters
	8.3 Fallback Parameters
	8.4 Other Parameter Notes
	8.5 Safe Parameters
	8.6 Textual Substitution

	9 SSAS Data Pump Datasets
	9.1 MDX Queries
	9.2 Parameter Processing

	10 Storing Datasets
	10.1 Modifying Datasets – Single Modification
	10.2 Modifying Datasets – Array of Modifications
	10.3 Modifying Datasets – Array of Mixed Modifications
	10.4 Before & After Statements
	10.5 Transaction and Rollback

	11 Dataset Transformations
	11.1 Introduction

	12 Fetching Multiple Datasets in One Request
	12.1 Introduction
	12.2 JSON Multi-Dataset Result Structure
	12.3 XML Multi-Dataset Result Structure

	13 Exec Datasets
	13.1 Introduction
	13.2 Configuration
	13.3 Output Return Mechanism
	13.4 A Simple Example
	13.5 Environment Variables
	13.6 Command Line Parameters
	13.7 Output & Headers

	14 Plugin Datasets
	14.1 Introduction
	14.2 Configuration
	14.3 Example Plugin
	14.4 Output & Headers
	14.5 Exception Handling

	15 Hook Modules
	15.1 Introduction
	15.2 Hook Points
	15.3 Configuration
	15.4 Sample Hook Template

	16 Performance Notes
	16.1 How Fast is Jarvis?

